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Figure 1: Left: (1) Speech-driven method (AMUSE + FaceFormer) generates speech-synchronized full-body animation; (2)
Video-driven reconstruction (PIXIE + DECA) tracks face, hands, and body. Center: Motion data is mapped onto a textured 3D
character, rendered, and streamed via Blender for VR interaction. Right: Participant interacting with virtual character.

Abstract

Animations produced by generative models are often evaluated
using objective quantitative metrics that do not fully capture per-
ceptual effects in immersive virtual environments. To address this
gap, we present a preliminary perceptual evaluation of generative
models for animation synthesis, conducted via a VR-based user
study (N = 48). Our investigation specifically focuses on anima-
tion congruency—ensuring that generated facial expressions and
body gestures are both congruent with and synchronized to driving
speech. We evaluated two state-of-the-art methods: a speech-driven
full-body animation model and a video-driven full-body reconstruc-
tion model, assessing their capability to produce congruent facial
expressions and body gestures. Our results demonstrate a strong
user preference for combined facial and body animations, highlight-
ing that congruent multimodal animations significantly enhance
perceived realism compared to animations featuring only a single
modality. By incorporating VR-based perceptual feedback into train-
ing pipelines, our approach provides a foundation for developing
more engaging and responsive virtual characters.
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1 Introduction

Immersive VR experiences rely on natural conversational inter-
actions between users and virtual characters, requiring accurate
replication of speech, gestures, and facial expressions. Non-verbal
cues such as gesture emotion, synchrony between facial expres-
sions and body gestures, and eye contact are essential for conveying
emotions and guiding responses [Sharkov et al. 2022; Stewart et al.
2024]. However, ensuring that generated animations capture these
details remains challenging [Patterson et al. 2023].

Existing generative methods have typically addressed facial an-
imation [Cudeiro et al. 2019; Fan et al. 2022; Pham et al. 2017;
Richard et al. 2021; Xing et al. 2023] and body gestures [Ginosar
et al. 2019; Habibie et al. 2022; Liang et al. 2022; Yang et al. 2023;
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Yoon et al. 2020] separately. Only recently have methods jointly
tackled facial and gesture synthesis [Habibie et al. 2022; Liu et al.
2024; Mughal et al. 2024; Ng et al. 2024; Shi et al. 2024; Yi et al. 2023].
Despite these developments, to our knowledge, no prior studies
have evaluated the perceived congruency—defined as the synchrony
between facial animations and body gestures. Existing evaluations
of full-body animations [Alexanderson et al. 2023; Chhatre et al.
2024; Danécek et al. 2023] mainly rely on objective metrics like
Fréchet Motion Distance [Yoon et al. 2020], beat alignment [Li et al.
2021], and gesture diversity [Li et al. 2023], overlooking subjective
aspects like perceived face-body congruency. Although previous
studies, such as the GENEA Challenge [Kucherenko et al. 2023]
and AV-Flow [Chatziagapi et al. 2025], have assessed virtual faces
and gestures separately, a comprehensive 3D evaluation is lack-
ing. Deichler et al. [Deichler et al. 2024] evaluated animations in
2D and VR from a third-person perspective but did not address
face-body congruency. We address this gap through a VR-based
perceptual study (N=48), examining the congruency between facial
expressions and body gestures during social interactions.

From numerous existing speech-driven face-expression and body-
gesture generative models, we select representative methods based
on their state-of-the-art performance metrics, such as realism, Fréchet
Gesture Distance, and beat alignment. For 3D representation, we use
the SMPL-X parametric model [Pavlakos et al. 2019]. The AMUSE
model [Chhatre et al. 2024] emphasizes emotional 3D body ges-
tures; we combined AMUSE with FaceFormer [Fan et al. 2021], a
SMPL-X-compatible, speech-driven face animation model. Addi-
tionally, we included a real-human baseline by capturing a per-
former’s face and body using PIXIE [Feng et al. 2021a], which
incorporates DECA [Feng et al. 2021b] to predict detailed 3D fa-
cial displacements. Using AMUSE+FaceFormer (speech-driven) and
PIXIE+DECA (video-driven), we evaluated perceived congruency
between facial animations and body gestures.

2 Implementation Details

We represent 3D geometry using the SMPL-X model [Pavlakos et al.
2019] as a mesh M(B, 0, p) encoding identity shape (B € R3%0),
pose (8 € R/*3), and facial expressions (p € R1%0),

Dialogue is generated via templated responses to scenario-based
questions and converted into emotional speech using PlayHT TTS?,
configured for an adult male storytelling style with neutral tempo
and loudness.

FaceFormer and AMUSE differ in input processing and model
architectures: FaceFormer extracts speech features using Wav2Vec
and employs an autoregressive transformer [Vaswani 2017] for
facial expression synthesis, while AMUSE utilizes a Vision Trans-
former (ViT) [Dosovitskiy 2020] to disentangle content-, emotion-,
and style-related features, explicitly modeling emotional influence
on gestures via conditional latent diffusion [Rombach et al. 2022].
Both generate 3D animations directly from raw audio; resulting
0 and g parameters are imported into Blender using the SMPL-X
add-on, enabling rigged animation with blend shapes (see fig. 1,
bottom left).

To evaluate synthetic animations against real human motion,
we also utilize a video-based regression pipeline. PIXIE [Feng et al.
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2021a] estimates pose 6, expression @, gender-specific shape f, and
albedo «, while DECA [Feng et al. 2021b] extracts high-fidelity
facial displacements. We record an actor responding to scenario-
based queries, extracting and processing video frames with PIXIE
and DECA to reconstruct geometry, albedo, and lighting parameters.
Original audio synchronizes lip movements. Detailed UV-mapped
shaded textures, including 3D displacements, are applied frame-
wise and exported as Wavefront OB]J files. Blender’s Geometry
Nodes editor instantiates and animates these objects, creating mesh
sequences (see fig. 1, top left). All animations share an identical
outdoor environment background.

3 Evaluation

RQ. “How does congruency between facial expressions and body
gestures affect participants’ preferences for full-body co-speech an-
imation?” We assess if users prefer synchronized facial and body
animations over those featuring a single active modality. Prior re-
search indicates that face and body perception [Simhi and Yovel
2020] and synchronized movements improve realism and interac-
tion quality [Fraser et al. 2022].

Study design. In a within-subjects experiment, participants in-
teracted with three avatars in a neutral emotion scenario: body
gestures only (with jaw rotations), facial expressions only (with
idle body), and both modalities combined. The avatar responded
to the topic “Weekend plans” with: “Cooking a comforting meal be-
comes a therapeutic experience on lazy Sundays, as I experiment with
recipes, savoring the joy of creating something delicious.” Participants
selected their preferred animation mode: combined face and body,
body-only, face-only, or none.

Apparatus. We used an HTC VIVE Pro 2 headset (90 Hz, 120°
FOV, 2448x2448 per-eye resolution) with integrated headphones.
Two SteamVR 2.0 base stations tracked participant positions. The
virtual environment was built in Blender 3.4 with OpenXR-based
SteamVR integration, rendering at 30 FPS on a PC (NVIDIA RTX
A6000).

Procedure. Participants received an introduction and provided
written consent. Wearing the HMD, they faced a virtual character
positioned 1.5 m away, allowing comfortable eye contact. After
experiencing the interaction scenario, participants removed the
headset and completed a scenario-specific survey.

4 Results

Forty-eight participants (28 male, 20 female; ages 19-48, u = 26.71,
SD=5.30) evaluated the congruency of animations with speech.
Overall, 88.54% preferred combined facial and body animations. For
the video-based method, 87.5% (42 participants) chose combined
animation, with 6.25% (3 each) preferring body-only or face-only
modes. In the audio-driven method, 89.58% (43 participants) selected
combined animations, 10.41% (5) preferred body-only, and none se-
lected face-only. Both methods exhibited high congruency between
gestures and speech. The strong preference for combined modali-
ties highlights that congruent facial and body animations enhance
perceived realism. Our findings suggest incorporating VR-based
subjective metrics, like perceived congruency, into model train-
ing can align outputs more closely with user perception. Iterative
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immersive user feedback could further refine real-time synchroniza-
tion, enhancing virtual assistant responsiveness and engagement.
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