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Figure 1: Teaching a robot the task of placing colored cubes in the right order and position: (A) a participant is teaching the 
robot how place a cube at the right location and (B) overview of the interaction surface from above. 
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Abstract 
Social robots are employed as companions, helping in industrial 
and domestic environments. Adapting robots’ capabilities to user 
needs can be achieved through teaching from human demonstra-
tions. However, the influence of robots’ preexisting proficiency 
and learning rate on human teachers’ self-efficacy and perception 
of the robots is underexplored. In this paper, we simulated four 
robot performance types that combine: (1) preexisting proficiency 
(low/high) and (2) learning rate (slow/fast). We conducted a con-
trolled lab experiment studying the impact of robots’ performance 
type on teachers’ self-efficacy, willingness to teach the robot, and 

perception of the robot (N=24), in which robots placed objects in 
suitable locations. Fast learners were perceived as more intelligent, 
anthropomorphic, and likable, and this caused higher teaching 
self-efficacy regardless of preexisting skills. Slow learners caused 
frustration while teaching. Moreover, participants stopped teaching 
robots with low preexisting skills sooner, regardless of the learning 
rate, indicating potential bias caused by expectations. 
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1 Introduction 
Commercial social robots are often employed as human companions 
and helpers, primarily in work and home contexts [2, 22, 34, 39]. 
These robots typically have limited proficiency and can complete a 
finite set of pre-programmed tasks. For example, a household robot 
assisting with cooking does not accommodate each potential user’s 
individual preferences and taste palates. It becomes unfeasible to 
pre-program such robots to suit all users’ needs, and successfully 
programmed conditions for a task may change with time and need 
to be updated [34]. To overcome this limitation, users must repro-
gram the robots and, therefore, “teach” how to perform customized 
tasks. However, since robot programming is not a trivial task [39], 
and not all users are equally tech-savvy, there is a need to introduce 
new methods to customize robots and accommodate various human 
needs [41], which we explore within the scope of this paper. 

Previous work has explored different strategies to customize 
robots, using methods such as reprogramming, downloading new 
skills, reinforcement learning, and Learning from Demonstration 
(LfD) [2, 21, 34]. LfD (or imitation learning) involves “teaching” a 
robot based on how a human would accomplish a certain task. When 
teaching robot students, teachers experience different perceived self-
efficacy and perceptions of the robot based on the robot learner’s 
errors [33]. Compared to teaching robots, it has been shown that 
teachers’ perception of, and trust in, the robots [2], and the human’s 
impression of themselves [21] is largely influenced by the robots’ 
learning process and its outcomes (e.g., errors). Yet, we do not fully 
understand how the perceived robots’ preexisting proficiency at 
different tasks before teaching affects human teachers’ efficacy 
while teaching robots new tasks or preferences. Moreover, while 
previous work has explored the impact of robot errors during the 
teaching process, the effect of the robot’s learning rate on the human 
teacher is less understood. 

In this paper, we investigate how different levels of robot preex-
isting proficiency and rate of learning a new skill influence human 
teachers’ perception of the robot and sense of self-efficacy at teach-
ing. For this, we designed an experiment based on two independent 
variables: (1) the robot’s preexisting proficiency at a secondary task 
(low/high) and (2) the robot’s learning rate of the task being taught 
(slow/fast). To indicate robot preexisting proficiency, robots demon-
strated their existing skill of drawing to each participant before a 
teaching session. The learning rate demonstrated how slow or fast 
a robot can learn a new skill of object placement from participants. 
To systematically investigate how robot preexisting proficiency 
and learning rate influence human teachers, we conducted a con-
trolled lab experiment in virtual reality environments (𝑁 = 24), in 
which participants had to teach a robot the correct placement of 
colored cubes on a work desk. Our results indicate that participants 
spent more time and made more attempts to teach slow-learning 
robots than fast-learning robots. Moreover, robots achieved lower 
proficiency with low existing skills than higher, and slow learners 
achieved lower proficiency than fast. Lastly, fast-learning robots 
with high existing skills reached higher proficiency levels than 
fast-learning robots with low existing skills. 

Contribution Statement 
This work studies the effect of a robot student’s preexisting profi-
ciency and learning rate on the human teacher while teaching the 
robot a new task. We contribute an empirical evaluation regarding 
how the teacher’s self-efficacy and perception of the robot are in-
fluenced by the robot’s shown initial proficiency at a different task 
and the robot’s learning rate while teaching it a new task. 

2 Related Work 
In this section, we provide a summary of existing work on teach-
ing robots. We focus on teaching robots through LfD, teaching 
environments, and the associated measures. 

2.1 Humans Teaching Robots 
Existing Human-Computer Interaction (HCI) and Human-Robot 
Interaction (HRI) work has shown that programming robots are 
not a trivial task [9, 26, 39]. Future robots employed in situations 
that need customization and skill uptake should, therefore, not 
rely on programming as the only method of enhancing the skill 
of the robots. Instead, it should be possible to transfer knowledge 
to the robot by any human who possesses this knowledge [26]. 
One possible solution to this problem is to have robots that are 
capable of learning from human input [1, 7, 25, 31, 38, 39], espe-
cially in contexts that rely on robots working in close proximity to 
humans [15, 22, 36]. 

Aliasghari et al. [2] examined the effect of a student robot’s ap-
pearance and errors with multiple severities on teachers’ trust in 
the robot and their future expectations. Mirnig et al. [33] similarly 
investigated the effects of robot errors on the perception of the ro-
bot. Other work examined the impact of a robot’s learning method 
(download, reinforcement learning, human-in-the-loop reinforce-
ment learning, and LfD) on the perception and perceived safety of 
the robot [34]. Calinon and Billard [7] explored how teachers’ incre-
mental refinement of the robot’s skill by moving its arms manually 
provides the appropriate scaffolds to reproduce the action. Thomaz 
and Cakmak [45] explored different ways that a human partner 
can intuitively help the robot learn. Libera et al. [31] developed a 
system to edit the motions of a small humanoid robot by touching 
its body parts. Cakmak and Thomaz [6] investigated ways to guide 
humans in the teacher’s role to teach more optimally. 

Early work by Friedman [16] proposed a model where robots 
compare predicted outcomes with actual experiences to refine their 
perceptions and predictive abilities. More recent studies have also 
investigated how children perceive learning robots in educational 
settings. For example, Chandra et al. [8] found that children’s per-
ception of a robot’s learning capabilities can affect their own learn-
ing gains in a handwriting task. The concept of dual learning has 
been explored by Kubota et al. [27], where robots simultaneously 
acquire perceptual and behavioral skills. This approach recognizes 
the interdependence of perception and action in robotic learning. 
These studies collectively highlight the complex relationship be-
tween robot perception, learning, and human interaction. Therefore, 
in this paper, we build on the practices from previous work that 
involve an iterative demonstration, i.e., learning by demonstration 
from the robot’s perspective, which facilitates learning of object 
placement in the right place and order. 



RoboTeach CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

2.2 How Student Robots Affect Human Teachers 
Previous work has shown that human teachers tend to adapt 
their teaching style to try to suit the robot’s [43, 44] perfor-
mance. Thomaz and Breazeal [44] have shown that transparency of 
the robot’s internal state helps improve human guidance. Aliasghari 
et al. [2] showed that a robot’s appearance affects perception of 
the robot, but not necessarily trust. However, even a small error 
could significantly reduce trust in a trainee robot performing a task 
regardless of the robot’s appearance. Zafari et al. [50] showed that 
a student robot’s method of communication affects the teacher’s 
self-efficacy, as defined by Bandura [3]. Moorman et al. [34] found 
that the robot’s learning method impacts the perceived anthro-
pomorphism of the student robot. Robot failure in learning from 
demonstration tasks negatively impacts human teachers’ trust, self-
confidence, and impression of the robot [21]. Contrary to these 
findings, Mirnig et al. [33] showed in their work that robot errors 
do not affect perceived intelligence, but increase likeability instead. 

While any learning algorithms is expected to make errors, previ-
ous work has not fully explored the impact of the robot student’s 
learning rate on the human teacher. Further, the effect of expecta-
tions created by a robot student’s preexisting proficiency on the 
human teacher’s method of teaching and willingness to teach is 
not fully understood. This is the gap our work means to address. 

2.3 Methods in HRI Studies on Humans 
Teaching Robots 

Previous work examining the process of teaching robots takes place 
in different contexts. Studies have been conducted with physical 
robots in-situ [11], with interactive remote robots [2], as well as 
in Virtual Reality (VR) [13, 14, 32, 47]. The context of these user 
studies could be industrial [47], domestic (e.g. with cooking [2] 
or healthcare [34]), or more social [11, 23]. These studies were 
interested in a number of subjective and objective measures. Objec-
tive measures included robot performance [14]. Meanwhile, sub-
jective measures included perception of the robot [2, 11, 34, 48], 
perceived safety [14, 32], user experience [47], and self-efficacy [50]. 
Researchers have investigated applying psychological and edu-
cational research methodologies to evaluate robot performance 
in classroom settings [46]. Typically non-experts naturally teach 
robots, revealing diverse teaching styles that can be categorized 
based on interaction types, testing patterns, and lesson organiza-
tion [25]. Moreover, humans tend to use multiple teaching methods 
when instructing robots on social and moral norms, adapting their 
approach based on the robot’s performance and task difficulty [10]. 
These findings contribute to a better understanding of human teach-
ing patterns and offer insights for designing more effective human-
robot teaching protocols. Although a teaching context might play 
an essential role in studying humans teaching robots, in this work, 
we focus on one abstract interaction context, in which a human 
and a robot are co-located in the same virtual space with a table 
between them and objects necessary to learn new skills. However, 
based on our knowledge, there is not much empirical evidence 
showing how student robots’ preexisting proficiency and learning 
rate affect human teachers, which we explore within the scope of 
this paper. 

3 Evaluation 
To evaluate how a student robot’s preexisting skill level and learning 
rate influence human perception of the robot, the self-efficacy of the 
human instructors, and their willingness to continue teaching the 
robot, we conducted a controlled lab experiment with the following 
research question: While teaching the robot a new skill, how do 
the robot’s preexisting proficiency at a different skill and the rate at 
which it learns the new skill affect the human teacher’s self-efficacy, 
perception of the robot, and willingness to teach? 

Before conducting the study, it is reasonable to assume that a 
fast-learning robot would be favored more than a slow-learning 
one. However, since we expect the learning behavior of future 
commercial robots to be uncontrollable by their end users, it is also 
important to study how a potentially slow-learning robot would be 
perceived. Additionally, how the robot’s learning rate interacts with 
other factors that might influence this perception, e.g., preexisting 
proficiency, is not clearly defined. 

3.1 Study Design 
To answer this question, we designed a within-subject study with 
two independent variables: (1) preexisting proficiency and (2) learn-
ing rate. Preexisting proficiency represents the ability level the robot 
could demonstrate at a secondary skill different from the one par-
ticipants teach the robot. This variable has two levels (low/high). 
The secondary preexisting skill (drawing a square in midair) is 
different from the new skill the robot will be taught (placement of 
colored cubes on a flat surface). We chose a midair drawing task to 
demonstrate preexisting skill as it shares some aspects of the cube 
placement task, while remaining different in nature. We reason 
that placing cubes on a flat surface and drawing in midair both 
involve 2D spatial reasoning, which is needed to correctly place the 
cubes and the vertices of a square, respectively. This allows some 
commonality between the tasks while not completely overlapping. 

The second variable (“learning rate” ) represents the rate at which 
the robot acquires the new target skill (placing a set of colored 
cubes in the correct order and position). Learning Rate has two 
(slow/fast) levels. This simulates the learning progression rate. We 
chose cube placement as the task to teach the robot for two reasons. 
First, pick-and-place is a common task in HRI user studies [30], 
and second, this can be an analog to some generic household tasks 
that a companion robot could be asked to help with, e.g., putting 
away the dishes. We combined all levels of independent variables 
to systematically investigate their effects, which resulted in a 2𝑥2 
within-subject study design and the following four experimental 
conditions: 

(1) LS: Low preexisting proficiency/ Slow learning rate 
(2) LF: Low preexisting proficiency/ Fast learning rate 
(3) HS: High preexisting proficiency/ Slow learning rate 
(4) HF: High preexisting proficiency/ Fast learning rate 

Participants’ task was to teach the robot a new skill, which we 
chose to be arranging colored (Red, Green, and Blue) cubes in a 
predefined order and placement, similar to object manipulation 
tasks in literature [34]. To simulate the learning process, we pre-
programmed a set of positions for the cubes that correspond to 
different types and severity of errors. As participants “teach” the ro-
bot, it progresses through the pre-designed placements in ascending 
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Figure 2: (A): Target order and placement of colored cubes taught to the robot. Three types of errors that the robot makes 
during the learning process: (B) misplacement, (C) wrong order, and (D) misplacement + wrong order. 

levels of correctness until it reaches full proficiency, at which point 
it perfectly mimics the placement as the participant instructs. The 
robot could make two types of errors, deviating from the pattern it 
is taught: arranging the cubes in the wrong order (e.g., Red-Green-
Blue when it was instructed with Blue-Red-Green) and placing the 
cubes incorrectly in 2D space (i.e., such that the position of each 
cube relative to the others is inaccurate). In addition, the robot can 
combine both error types (Figure 2). The rotation of the cubes did 
not matter. This means that cubes would still have been considered 
in the correct arrangement even with some side misalignment. 

The robot’s task proficiency could be implicitly represented as a 
percentage, ranging from 0% (no proficiency) to 100% (full mastery), 
increased after each valid demonstration depending on its learning 
speed: slow learners increased their proficiency by 10% per correct 
human demonstration, requiring 10 iterations to reach full mas-
tery. Fast learners increased their proficiency by 33.34%, requiring 
three iterations to mastery. The robot attempted the task after each 
demonstration, and its performance reflected its proficiency level: 
below 33.34%, it made combined mistakes (misplacement + wrong 
order); between 33.34% and 66.68%, it made only wrong-order mis-
takes; and between 66.68% and 100%, it made only misplacement 
mistakes, with the degree of misplacement becoming smaller as pro-
ficiency increased. At 100% proficiency, the robot made no mistakes. 
These proficiency step sizes were designed to clearly distinguish 
slow- and fast-learning while keeping the study session at a reason-
able length. The possible types of mistakes the robot could make 
while learning are shown in Figure 2. 

3.2 Apparatus 
We built the study environment in Unity 2022.3.21f1. To represent 
the robot, we used the premade default 3D model in the Unity 3rd-
person starter asset package (Figure 4). The virtual environment 
resembled a room with approximate dimensions W x H x D = 14.1m 
x 6m x 24m. The interaction with the task and cubes took place on 
a table-like platform with measurements W x H x D = 1.4m x 0.85m 
x 1.2m. The cubes had a side length of 0.1𝑚. The VR environment 
and interaction surface can be seen in Figures 1 and 4. Participants 
experienced the study environment through the Meta Quest 2 head-
mounted display and interacted with the environment using the 
hand-held controller. 

3.3 Measures 
To compare all levels of preexisting proficiency and learning rates, 
we measured the following dependant variables: 

• Teaching time, sec: we measured the amount of time in-
vested into teaching a robot. 

• Number of teaching attempts: we counted the number of 
attempts to teach a robot to a proficient level. 

• Achieved proficiency: we noted the achieved proficiency 
of a robot on the scale from 0 to 1.0 with a step of 0.1 when 
participants decided to stop the teaching process. 

• Initial observing time, sec: we measured the amount of 
time participants used to observe a robot performing the 
shape-drawing task before teaching began. While unrelated 
to teaching, we put this measure in place to gauge whether or 
not each participant paid attention to the robot’s preexisting 
skill, the effect of which is core to our research question. 
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(a) (b) 

Figure 3: Robots in our study demonstrated their preexisting proficiency at a secondary task by drawing a square in midair. a) 
robot with low preexisting proficiency fails to properly draw a square. b) robot with high preexisting proficiency correctly 
draws a square. 

• Robot perception: we assessed how participants perceived 
a robot in terms of intelligence, safety, likeability, anthropo-
morphism, and animacy, based on the Godspeed series [4]. 

• Teaching self-efficacy: after each teaching session, partic-
ipants indicated their self-efficacy concerning their ability 
to teach and interact with the robot using items 2, 8, and 10 
extracted from the Self-efficacy in HRI scale [35]. 

• Teaching experience: after each teaching session, partic-
ipants indicated their experience teaching a robot using a 
UEQ-S [40]. 

• Willingness to teach: after each teaching session, partici-
pants assessed their desire to continue the teaching session 
or engage with a robot. 

3.4 Participants 
We recruited 24 participants (self-identified: 11 M, 13 F) aged be-
tween 22 and 40 (𝑀 = 29.54, 𝑆𝐷 = 4.14) through a convenience 
sampling and university mailing lists. Their experience levels with 
teaching included teaching children outside of school (e.g. sum-
mer camp) (3), workplace training (1), school teacher/university 
tutor (11), and none (9). Participants rated their familiarity with 
computer science, robotics, and AI, on a scale of 1 (novice) to 5 
(expert) (𝑀 = 2.54, 𝑆𝐷 = 1.22). They also responded to the Ten-item 
Personality Inventory (TIPI) [19], Extraversion (𝑀 = 4.44, 𝑆𝐷 = 
1.28), Agreeableness (𝑀 = 4.83, 𝑆𝐷 = 1.00), Conscientiousness 
(𝑀 = 4.88, 𝑆𝐷 = 1.27), Emotional Stability (𝑀 = 4.96, 𝑆𝐷 = 1.00), 
and Openness to Experience (𝑀 = 5.54, 𝑆𝐷 = 0.85). One participant 
reported some feelings of motion sickness after finishing the study. 
All participants had normal or corrected-to-normal vision. 

3.5 Procedure 
Participants were briefed about the study environment and task 
of teaching the robot to place colored cubes. After providing their 
informed consent to take part in the study, participants filled out 
the onboarding questionnaire which captured their demographic 
information, computer science/robotics familiarity, teaching com-
petencies, and personality information. We then provided a guided 
tutorial to familiarize participants with the VR environment and 
the basics of interacting with the robot. Participants are then told 
that they will be teaching a task to four different robots that visu-
ally look identical but represent different learning algorithms. For 
each of the four conditions, the interaction begins with the robot 
waving at the participants to request their attention, followed by 
preexisting proficiency demonstration where the robot displays its 
preexisting proficiency in an unrelated skill by attempting to draw 
a square in midair. Participants are told that the robot was taught 
this skill previously, reaching its current exhibited skill level. This 
happens once. Participants were not explicitly told anything else 
about the robot’s capabilities. The rest of the interaction followed 
these steps: 

(1) Teaching session: Each teaching session starts with an 
identical setup, with the cubes initially placed in the same 
positions (the area marked by “unsorted objects” in Figure 
1.B) ready to be picked up by participants. Participants are 
asked to teach the robot to place three cubes in a specific 
order. They are instructed to pick up the cubes using the 
handheld controller and to place them in a “target” quad-
rant on top of a work bench in the VR environment (Figure 
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Figure 4: Study setup in VR: Participants stood in front of a 
virtual desk in front of a robot that demonstrated to them its 
preexisting skills and its intermediary progress of learning 
a new skill. 

4). This step ends only when the participant uses the hand-
held controller to tap the finished button, signifying that the 
correct arrangement was fully demonstrated. 

(2) Learning progress demonstration: the robot demon-
strates its current learning progress by attempting to repeat 
the cube placement task. This is when participants can see 
the progress made by the robot in learning. 

(3) Continue to teach?: a prompt appears in front of the partic-
ipant asking them whether they wish to continue teaching 
the robot, or stop the interaction. This appears only if par-
ticipant has completed four or more teaching sessions. 

For each of the conditions, we designed the continue to teach 
prompt to only appear from the fourth teaching session onwards. 
This was done to ensure that participants can see the robot make 
some amount of progress, and to dispel any wrong impression that 
the robot is meant to perform one-shot learning. The order of ex-
perimental conditions was counterbalanced using a Balanced Latin 
square. After each condition, participants complete questionnaires 
assessing their perception of the robot and their self-efficacy. After 
all four conditions, participants are interviewed and asked open-
ended questions about their experience during the study as well 
as their thoughts on the teaching process, learning, and their own 
self-efficacy. All study sessions lasted approximately 60 minutes. 

3.6 Data analysis 
Quantitative data: Given the non-parametric nature of the 

collected data, we applied the aligned rank transform for non-
parametric factorial analyses [49]. Therefore, we applied an Aligned 
Rank Transform (ART) ANOVA for all statistical analyses presented 
below. For pairwise comparisons, we used a Bonferroni correction. 

Qualitative data: Two authors performed inductive thematic 
analysis [42] on interview transcripts and open questionnaire items. 
Themes were derived by each researcher separately, then consoli-
dated together in a second iteration. 

4 Results 
Our results indicate that participants spent more time observing 
robots with lower than higher preexisting skill. Moreover, robots 
achieved higher proficiency with high preexisting skill than low. 
Participants perceived robots with higher preexisting skill to be 
more anthropomorphic. Faster learners were also perceived as more 
anthropomorphic than their slower counterparts. 

Additionally, robots exhibiting faster learning were perceived to 
be more animated, likeable, and intelligent. Participants reported 
higher self-efficacy, better experience, and more willingness to 
teach when teaching fast learners. 

4.1 Teaching time 
We found that participants spent comparable amount of teaching 
robots with low (𝑀𝑑 = 114.5𝑠𝑒𝑐, 𝐼 𝑄𝑅 = 61) existing skill than higher 
(𝑀𝑑 = 113.5𝑠𝑒𝑐, 𝐼 𝑄𝑅 = 55.5). This finding was supported by the non-
statistically significant main effect for the existing skill (𝐹 (1, 23) = 
0.051, 𝑝 = 0.82, 𝜂 2 = 0.0022). As for the learning rate, participants 
spent more time teaching slow learners (𝑀𝑑 = 139𝑠𝑒𝑐, 𝐼 𝑄𝑅 = 54.5) 
than fast learners (𝑀𝑑 = 94𝑠𝑒𝑐, 𝐼 𝑄𝑅 = 55). This finding was sup-
ported by the statistically significant main effect for the learning 
rate (𝐹 (1, 23) = 18.4, 𝑝 < 0.001, 𝜂 2 = 0.44). Finally, we did not ob-
serve a statistically significant interaction effect for existing skill * 
learning rate (𝐹 (1, 23) = 0.66, 𝑝 = 0.42, 𝜂 2 = 0.03). 

4.2 Number of attempts 
We found that participants used a comparable number of attempts 
between teaching a robot with low (𝑀𝑑 = 5.5, 𝐼 𝑄𝑅 = 4) and high 
(𝑀𝑑 = 6, 𝐼 𝑄𝑅 = 3) existing skill. This finding was supported by 
the non-statistically significant main effect for the existing skill 
(𝐹 (1, 23) = 0.33, 𝑝 = 0.56, 𝜂 2 = 0.014). As for the learning rate, 
participants made more attempts to teach slow learners (𝑀𝑑 = 
7, 𝐼 𝑄 𝑅 = 3.25) than fast learners (𝑀𝑑 = 5, 𝐼 𝑄𝑅 = 1.25). This finding 
was supported by the statistically significant main effect for the 
learning rate (𝐹 (1, 23) = 28.9, 𝑝 < 0.001, 𝜂 2 = 0.56). Finally, we did 
not observe a statistically significant interaction effect for existing 
skill * learning rate (𝐹 (1, 23) = 1.72, 𝑝 = 0.2, 𝜂 2 = 0.069). 

4.3 Achieved proficiency 
We found that when participants decided to stop teaching, robots 
had achieved lower simulated proficiency with low (𝑀 = 86%, 𝑆𝐷 = 
21) than high(𝑀 = 88%, 𝑆𝐷 = 17) existing skill. This finding was 
supported by the statistically significant main effect for the existing 
skill (𝐹 (1, 23) = 19.1, 𝑝 < 0.001, 𝜂 2 = 0.45). As for the learning 
rate, slow learners achieved lower proficiency (𝑀 = 74%, 𝑆𝐷 = 
19) than fast (𝑀 = 100%, 𝑆𝐷 = 0). This finding was supported 
by the statistically significant main effect for the learning rate 
(𝐹 (1, 23) = 56.4, 𝑝 < 0.001, 𝜂 2 = 0.71). Finally, we observed a 
statistically significant interaction effect for existing skill * learning 
rate (𝐹 (1, 23) = 19.19, 𝑝 < 0.001, 𝜂 2 = 0.45). However, none of the 
pairwise comparisons were statistically significant (𝑝 > 0.05) due 
to the p-value correction. 

4.4 Initial observing time 
We found that participants spent more time initially observing 
robots with low (𝑀𝑑 = 25𝑠𝑒𝑐, 𝐼 𝑄𝑅 = 3.25) existing skill than high 
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Figure 5: Overview of results: means and standard errors for the teaching time, number of attempts, achieved proficiency, and 
initial observing time. The results are grouped by two independent variables: (1) preexisting proficiency and (2) learning rate. 

(𝑀𝑑 = 24𝑠𝑒𝑐, 𝐼 𝑄𝑅 = 2). This finding was supported by the sta-
tistically significant main effect for the existing skill (𝐹 (1, 23) = 
9.53, 𝑝 = 0.005, 𝜂 2 = 0.3). As for the learning rate, the time was com-
parable for slow (𝑀𝑑 = 25, 𝐼 𝑄 𝑅 = 2) and fast (𝑀𝑑 = 25, 𝐼 𝑄𝑅 = 3) 
learners. This finding was supported by the non-statistically signifi-
cant main effect for the learning rate (𝐹 (1, 23) = 0.96, 𝑝 = 0.33, 𝜂 2 = 
0.04). Finally, we did not observe a statistically significant interac-
tion effect for existing skill * learning rate (𝐹 (1, 23) = 0.005, 𝑝 = 
0.94, 𝜂 2 = 0.0002). 

4.5 Robot perception 
Our results indicate that participants perceived fast-learning robots 
as more animated, likeable, and intelligent. Moreover, robots with 
low existing skills were perceived as less anthropomorphic than 
skilled robots. There was no influence on perceived safety from the 
existing skill or the learning rate. 

Across the four conditions, we observed high internal reliability, 
measured using Cronbach’s 𝛼 , for the Godspeed subscales Anthro-
pomorphism (0.874 to 0.939), Animacy (0.838 to 0.885), Likeability 
(0.914 to 0.970), Perceived Intelligence (0.901 to 0.957). Perceived 
Safety exhibited lower reliability (0.586 to 0.858). Overall internal 
reliability is summarized in table 1. 

Table 1: Cronbach’s 𝛼 and 95% Confidence Intervals for God-
speed Questionnaire [4] Subscales 

Subscale Cronbach’s 𝛼 [95% CI] 
Anthropomorphism 0.907 [0.874, 0.933] 
Animacy 0.897 [0.860, 0.925] 
Likeability 0.935 [0.912, 0.953] 
Perceived Intelligence 0.936 [0.914, 0.953] 
Perceived Safety 0.702 [0.577, 0.795] 

4.5.1 Anthropomorphism. Participants perceived that robots with 
low (𝑀𝑑 = 2, 𝐼 𝑄𝑅 = 1.45) existing skills were less anthropomorphic 

than those with high (𝑀𝑑 = 2.2, 𝐼 𝑄𝑅 = 1.45). This finding was 
supported by the statistically significant main effect for the existing 
skill (𝐹 (1, 23) = 4.8, 𝑝 = 0.04, 𝜂 2 = 0.17). Similarly, fast-learning 
robots (𝑀𝑑 = 2.3, 𝐼 𝑄𝑅 = 1.4) were perceived as more anthropomor-
phic than slow-learning ones (𝑀𝑑 = 1.8, 𝐼 𝑄 𝑅 = 1.05). This finding 
was supported by the statistically significant main effect for the 
learning rate (𝐹 (1, 23) = 13.2, 𝑝 = 0.001, 𝜂 2 = 0.36). Finally, we ob-
served a statistically significant interaction effect for existing skill * 
learning rate (𝐹 (1, 23) = 7.62, 𝑝 = 0.01, 𝜂 2 = 0.24). However, none 
of the pairwise comparisons were statistically significant (𝑝 > 0.05) 
due to the p-value correction. 

4.5.2 Animacy. Participants did not report differences in animacy 
for robots with low (𝑀𝑑 = 2.2, 𝐼 𝑄𝑅 = 1.65) existing skills than those 
with high (𝑀𝑑 = 2.3, 𝐼 𝑄𝑅 = 1.05). This finding was supported by 
the statistically non-significant main effect for the preexisting skill 
(𝐹 (1, 23) = 2.7, 𝑝 = 0.11, 𝜂 2 = 0.1). However, fast-learning robots 
(𝑀𝑑 = 2.4, 𝐼 𝑄𝑅 = 1) were perceived as more animated than slow-
learning ones (𝑀𝑑 = 1.8, 𝐼 𝑄𝑅 = 1.25). This finding was supported 
by the statistically significant main effect for the learning rate 
(𝐹 (1, 23) = 26.7, 𝑝 < 0.001, 𝜂 2 = 0.53). Finally, we did not observe a 
statistically significant interaction effect for existing skill * learning 
rate (𝐹 (1, 23) = 5.7, 𝑝 = 0.03, 𝜂 2 = 0.19). 

4.5.3 Likeability. Participants did not have preferences in likeabil-
ity between robots with low (𝑀𝑑 = 3.1, 𝐼 𝑄𝑅 = 1.05) preexisting 
skills and those with high (𝑀𝑑 = 3.1, 𝐼 𝑄𝑅 = 1.05) preexisting skills. 
This finding was supported by the statistically non-significant main 
effect for the existing skill (𝐹 (1, 23) = 0.41, 𝑝 = 0.52, 𝜂 2 = 0.017). 
However, fast-learning robots (𝑀𝑑 = 3.4, 𝐼 𝑄 𝑅 = 0.8) were more 
likeable than slow-learning ones (𝑀𝑑 = 2.8, 𝐼 𝑄𝑅 = 1). This finding 
was supported by the statistically significant main effect for the 
learning rate (𝐹 (1, 23) = 17.4, 𝑝 < 0.001, 𝜂 2 = 0.43). Finally, we did 
not observe a statistically significant interaction effect for existing 
skill * learning rate (𝐹 (1, 23) = 3.5, 𝑝 = 0.07, 𝜂 2 = 0.13). 
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Figure 6: Overview of results: means and standard errors for subscales of robot perception. The results are grouped by two 
independent variables: (1) preexisting proficiency and (2) learning rate. 

4.5.4 Perceived Intelligence. Similarly, participants did not perceive 
robots with low (𝑀𝑑 = 2.4, 𝐼 𝑄𝑅 = 1.65) existing skills as the ones 
with lower intelligence than with high (𝑀𝑑 = 2.4, 𝐼 𝑄𝑅 = 1.45). 
This finding was supported by the non-statistically significant main 
effect for the existing skill (𝐹 (1, 23) = 0.21, 𝑝 = 0.64, 𝜂 2 = 0.009). 
However, fast-learning robots (𝑀𝑑 = 3.2, 𝐼 𝑄𝑅 = 1.2) were perceived 
as more intelligent than slow-learning ones (𝑀𝑑 = 2, 𝐼 𝑄𝑅 = 1). This 
finding was supported by the statistically significant main effect 
for the learning rate (𝐹 (1, 23) = 38.2, 𝑝 < 0.001, 𝜂 2 = 0.62). Finally, 
we did not observe a statistically significant interaction effect for 
existing skill * learning rate (𝐹 (1, 23) = 1.69, 𝑝 = 0.2, 𝜂 2 = 0.07). 

4.5.5 Perceived Safety. Participants did not observe any differences 
in safety neither between robots with low (𝑀𝑑 = 3.6, 𝐼 𝑄𝑅 = 1.1) 
and high (𝑀𝑑 = 3.3, 𝐼 𝑄𝑅 = 1.1) existing skills nor slow (𝑀𝑑 = 
3.3, 𝐼 𝑄 𝑅 = 1.3) and fast (𝑀𝑑 = 3.5, 𝐼 𝑄𝑅 = 1) learners. Both of 
these results are supported by the non-statistically significant main 
effects for the existing skill (𝐹 (1, 23) = 0.4, 𝑝 = 0.53, 𝜂 2 = 0.017) and 
learning rate (𝐹 (1, 23) = 1.16, 𝑝 = 0.29, 𝜂 2 = 0.05). Finally, we did 
not observe a statistically significant interaction effect for existing 
skill * learning rate (𝐹 (1, 23) = 0.37, 𝑝 = 0.54, 𝜂 2 = 0.016). 

4.6 Teaching self-efficacy 
Participants did not observe any differences in their own assessment 
of teaching efficacy between robots with low (𝑀𝑑 = 4, 𝐼 𝑄𝑅 = 3) 
and high (𝑀𝑑 = 4.375, 𝐼 𝑄𝑅 = 3) existing skills. This finding 
was supported by the non-statistically significant main effect for 
the existing skill (𝐹 (1, 23) = 0.44, 𝑝 = 0.51, 𝜂 2 = 0.018). How-
ever, participants perceived themselves as more efficient teachers 
with fast- (𝑀𝑑 = 4.875, 𝐼 𝑄𝑅 = 1.375) than with slow-learning 
(𝑀𝑑 = 2.375, 𝐼 𝑄𝑅 = 2.125) robots. This finding was supported 
by the statistically significant main effect for the learning rate 
(𝐹 (1, 23) = 47.7, 𝑝 < 0.001, 𝜂 2 = 0.67). Finally, we did not observe a 
statistically significant interaction effect for existing skill * learning 
rate (𝐹 (1, 23) = 0.91, 𝑝 = 0.34, 𝜂 2 = 0.038). 

4.7 Teaching experience 
4.7.1 Pragmatic experience. Participants did not observe any dif-
ferences in the pragmatic aspects of their teaching robots with 
low (𝑀𝑑 = 4, 𝐼 𝑄𝑅 = 2.75) and high (𝑀𝑑 = 4, 𝐼 𝑄𝑅 = 2.5) ex-
isting skills. This finding was supported by the non-statistically 
significant main effect for the existing skill (𝐹 (1, 23) = 0.17, 𝑝 = 
0.68, 𝜂 2 = 0.007). However, participants had a better pragmatic 
experience with fast- (𝑀𝑑 = 4.75, 𝐼 𝑄𝑅 = 1.25) than with slow-
learning (𝑀𝑑 = 2.875, 𝐼 𝑄𝑅 = 1.5) robots. This finding was sup-
ported by the statistically significant main effect for the learning 
rate (𝐹 (1, 23) = 52.6, 𝑝 < 0.001, 𝜂 2 = 0.67). Finally, we did not ob-
serve a statistically significant interaction effect for existing skill * 
learning rate (𝐹 (1, 23) = 0.91, 𝑝 = 0.34, 𝜂 2 = 0.038). 

4.7.2 Hedonic experience. Similarly, participants did not observe 
any differences in the hedonic aspects of their teaching robots with 
low (𝑀𝑑 = 3.75, 𝐼 𝑄𝑅 = 2.06) and high (𝑀𝑑 = 3.375, 𝐼 𝑄𝑅 = 2) ex-
isting skills. This finding was supported by the non-statistically 
significant main effect for the existing skill (𝐹 (1, 23) = 1.2, 𝑝 = 
0.27, 𝜂 2 = 0.05). However, participants had a better hedonic ex-
perience with fast- (𝑀𝑑 = 4.125, 𝐼 𝑄𝑅 = 1.625) than with slow-
learning (𝑀𝑑 = 2.75, 𝐼 𝑄𝑅 = 1.56) robots. This finding was sup-
ported by the statistically significant main effect for the learning 
rate (𝐹 (1, 23) = 25.5, 𝑝 < 0.001, 𝜂 2 = 0.52). Finally, we observed a 
statistically significant interaction effect for existing skill * learning 
rate (𝐹 (1, 23) = 5.2𝑝 = 0.034, 𝜂 2 = 0.18). However, none of the 
pairwise comparisons were statistically significant (𝑝 > 0.05) due 
to the p-value correction. 

4.8 Willingness to continue teaching 
Lastly, robots’ existing skill did not make a difference on partici-
pants’ self-reported willingness to continue teaching them, if for 
low (𝑀𝑑 = 4, 𝐼 𝑄 𝑅 = 3) or high (𝑀𝑑 = 4, 𝐼 𝑄𝑅 = 3) existing skills. 
This finding was supported by the non-statistically significant main 
effect for the existing skill (𝐹 (1, 23) = 1.14, 𝑝 = 0.29, 𝜂 2 = 0.05). 
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Figure 7: Overview of results: means and standard errors for teaching experience and willingness to teach. The results are 
grouped by two independent variables: (1) preexisting proficiency and (2) learning rate. 

However, participants’ willingness to teach was higher for fast-
(𝑀𝑑 = 5, 𝐼 𝑄𝑅 = 2) than slow-learning (𝑀𝑑 = 3, 𝐼 𝑄𝑅 = 3) robots. 
This finding was supported by the statistically significant main 
effect for the learning rate (𝐹 (1, 23) = 24.9, 𝑝 < 0.001, 𝜂 2 = 0.52). Fi-
nally, we did not observe a statistically significant interaction effect 
for existing skill * learning rate (𝐹 (1, 23) = 3.88, 𝑝 = 0.06, 𝜂 2 = 0.14). 

4.9 Qualitative results 
We observed several themes in participants responses, related to 
perception of the robots, their performance, and the teaching pro-
cess. Below are the major themes observed and participant quotes. 

4.9.1 Influence of preexisting proficiency. Robots with higher pre-
existing proficiency caused participants to expect faster learning 
speed, and vice versa. “I expected [the robot] to be faster because I 
saw that the rectangle was perfect and I thought, okay, then you also 
do the task easier [...]”[P1] “[...]if the first task is already completely 
wrong, then I might lose motivation to continue. ”[P3] “I thought if 
[the robots] are good at drawing, they should be smarter[...]”[P10] 
“When I saw the robot drawing a rectangle that was not a rectangle 
at all, I already had the preconception that, oh, he might be a little 
bit dumber or something.”[P17] 

Participants reported being (positively) surprised when a robot 
that exhibited low preexisting proficiency was learning fast, finding 
this behavior a sign of complexity. “[...] the last [LF] one was did 
completely opposite of what it’s supposed to do [on the drawing task] 
but it was more complex and it was pretty smooth.”[P12] “[...] that’s 
why I was surprised that it did learn the order even if it drew the 
hourglass shape at first.”[P19] “[...] for the last [LF] one, for instance, 
the performance of the previous task was poor again, and then the 
robot learned really fast from what I’ve shown to the robot, and then 
I was happy.”[P24] 

Additionally, some participants noted that during teaching they 
perceived the preexisting skill level to be at an unrelated, therefore 
irrelevant, task. “ [...] the first [LF] one did it wrong, but learned pretty 
good. And the second [HS] one did the drawing right, but didn’t learn 

as well. So I was like it doesn’t matter how they behave in drawing, 
because it’s a different task.”[P2] “Well, first I thought [...] that it said 
something about how well they would perform in the next task, but 
I think it didn’t. I think there was not connection [...] (between) the 
rectangle task and the cube task [...]”[P14] 

4.9.2 Influence of learning speed. Multiple participants reported 
higher motivation when the robot exhibited quick progress, and 
vice versa. “[...]but if I see some progress and I see it’s okay [...] just one 
small color mistake, and I would teach again.”[P3] Slow learning was 
described as frustrating and led some participants to cut the training 
short before the robot achieved the highest proficiency. “The robots 
that learned quickly were very motivating and the other ones were 
very frustrating.”[P11] “[...] some of them did really bad and I thought, 
okay, let’s give them one other try, but it was rather frustrating.”[P14] 
“I felt like its hard to teach this robot, so I quit.”[P21] Conversely, 
even small progress or change in output seems to have increased 
participants’ motivation to teach the robot. “[...] if they made a little 
progress, I thought, okay, you can do something, I can do something if 
I continue.”[P14] “It was important for me to see differences in each 
iteration, so that I could see that the robot learned something or he 
improved from iteration to iteration. That’s also how I decided when 
to stop continuing to teach.”[P17] 

4.9.3 Other remarks. Participants reported adapting their teaching 
approach for different robots depending on learning progress, as 
well as to explore the robot’s responses to different teaching ap-
proaches: “I tried different techniques with different robots. So with 
one robot, I tried to just do [the teaching] quickly, [...] just like a hu-
man being would be because it’s like an easy task. [...] I also bring the 
[blocks] in a straight line because I wanted to know if [the robot] just 
throw it on there, or if they just really copy the positions as well.”[P1] 

Some participants seemed to have perceived one of the robots 
differently in aspects that were common to all robots. For example, 
one participant perceived the fast-learning, high preexisting profi-
ciency (HF) robot to be more adaptive because it waved at them. 
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Notably, this waving animation was common to all four conditions. 
“[...] I feel like the last [FS] one was a more adaptive one because 
I’m not sure if the others did it as well, but [the robot] waved when 
it started.”[P2] Similarly, one participant reported perceiving one 
robot’s movement to be more fluid, even when the animations were 
all identical. “I felt like there was one robot to move significantly 
less rigidly than the others.”[P19] Another participant reported feel-
ing “sympathy” for the slow learners. “I sympathize with the slow 
learners, I don’t know.”[P18] 

Interestingly, one participant perceived the low preexisting pro-
ficiency, fast-learner (LF) robot to be more advanced than the rest. 
“[...] I thought that it [LF] may learn; it has the capacity to learn more 
[...]”[P12] In a similar vein, some participants expressed the feeling 
that the slow-learning robot “was not trying”, as if ignoring their 
teaching. “I was more patient with the first [LF] one. I gave more 
attempts.[...] like you realized he’s really trying. Because the second 
[HS] one was not trying, or the third one [LS].”[P2] 

5 Discussion and Future Work 
It can be generally seen from the results that participants heavily 
favored fast learners, rating them as more likeable, intelligent, and 
animated. The hedonic experience ratings support this interpreta-
tion. It also makes sense that participants would be more willing 
to teach fast learners; faster learners provide earlier gratification 
and appear more responsive, which leads teachers to feel more 
effective and confident in their teaching. This is reflected in the 
higher teacher self-efficacy ratings when teaching fast learners. As 
we mentioned in section 3, participants favoring a fast-learning 
robot is to be expected. However, seeing as end users are not ex-
pected to have any control over how fast their commercial robots 
can learn, our results can help make sense of how the learning rate 
can affect end users. Additionally, after conducting our study, we 
now have an understanding of how the learning rate interacts with 
other properties of the robot to shape the perception of end users. 

5.1 Do higher preexisting proficiency or faster 
learning rates make robots human-like? 

Participant ratings associated a higher perception of anthropomor-
phism with robots having higher preexisting proficiency or faster 
learning rates. We interpret this to mean that participants found 
those qualities more human-like. This seems to contradict with 
previous work showing that participants may perceive a robot 
that makes mistakes as more human than one with perfect perfor-
mance [33]. Further, participant comments reflected a tendency to 
anthropomorphize the robots, regardless of their capabilities. This 
is reflected in comments describing the robots and whether or not 
they were “trying” to learn, endowing the robots with willpower 
they do not have. This is consistent with existing work on ten-
dencies of humans to anthropomorphize robots, machines, and 
other kinds of non-sentient agents [4, 12, 17, 28]. Another sign of 
anthropomorphizing can be seen in some participant comments 
assigning a gendered “he” to the genderless robot. However, since 
English is not the native language of some participants, this gen-
dering might be an artifact of some participants’ gendered native 
language. We acknowledge that the robot’s humanoid form factor 
in our study may have contributed to particiants’ tendencies to 

anthropomorphize the robot. The utility of robots looking and be-
having like humans is situational [18], which presents form factor 
as another variable to be manipulated so that results can be studied. 
We would be interested in seeing if the same study conducted with 
non-humanoid robots in the student position would lead to differ-
ent anthropomorphizing tendencies. Future work can also examine 
if the robot’s form factor affects the other constructs we measured 
in our study. 

5.2 Expectations and self-fulfilling prophecies 
Participant comments repeatedly indicated that preexisting pro-
ficiency did not affect their motivation to continue teaching the 
robots. However, we could see in the session logs that proficient 
robots were trained to a higher skill level, which might indicate a 
higher desire to invest time and effort into teaching the robots. We 
interpret this to point to an unconscious bias formed by expecta-
tions; participants expected proficient robots to achieve higher skill 
and, therefore, continued teaching them until they reached that 
higher skill level. Conversely, robots that showed modest perfor-
mance from the outset caused participants to not expect as much 
from them, leading to lower achieved proficiency. This describes 
a “self-fulfilling prophecy” that shaped the outcome of the teach-
ing process. This is consistent with some findings indicating this 
possibility in pedagogy research on human teacher-human student 
interaction [24, 37]. 

While participants in our study found slow learners to be frus-
trating and perceived them as less intelligent, we do not consider 
algorithms that learn slowly to be inferior. In a more complex 
context where the task is more intricate, there can be benefits to 
learning slowly, e.g., avoiding hasty generalizations, which would 
be analogous to overfitting in the context of machine learning. The 
negative effects of slower learning can be mitigated by other means, 
such as the robot asking questions about the task [5, 20]. This can 
serve the dual benefit of giving the robot more information about 
the task beyond demonstration, while giving the human teacher 
the necessary feedback about the robot’s learning progress, which 
may not be perceptible otherwise. It is also noteworthy that the 
frustration participants felt while teaching slow-learners is partially 
due to expectations. In the context of a commercial robot that a user 
can buy and teach a new task, if the robot’s learning parameters 
and process are opaque to the user, it might also be perceived as 
slow or “stupid”. It is then the role of interaction designers to set 
the right expectations for the user for such a system to be usable. 
We have also seen evidence that participants would adapt their 
teaching style and strategy when the robots were not responsive, 
which is consistent with findings from previous research [44]. Ad-
ditionally, having lower expectations is not necessarily an aspect to 
be avoided, as lower expectations can reduce the negative impact 
of errors on trust [29]. This is another reason for future studies 
to investigate the effects form factor can have as an independent 
variable on such expectations. 

5.3 What have we “learned”? 
Our results show that the surest way to design a student robot that 
human teachers would prefer is to make it a fast learner. In our 
study, the robot’s learning behavior was pre-programmed and rigid 
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for the sake of consistency in simulation. Outside of the lab, when 
learning-capable assistant robots reach the commercial market, 
their performance and learning speed will be determined by the 
underlying learning algorithm, and mostly out of the hands of their 
owners or teachers. While preference for a faster learning robot 
may be obvious in hindsight, we argue that other factors affecting 
human perception of robot learning need to be studied, as well as 
the interaction between these factors and learning rate. Participant 
comments show that initial capabilities shape the impression made 
by the robot, as seen in 4.9.1 when a participant found a seemingly 
less capable robot (lower initial proficiency) to be more notewor-
thy and fulfilling to teach than its more capable counterpart. This 
means that designers of such robots need to consider communi-
cation methods and strategies that properly set the expectations 
of human teachers to avoid negative impressions or frustration. 
Human-robot teaching patterns following fully human classroom 
dynamics, coupled with the anthropomorphizing of robots, point 
to pedagogy research and literature [25, 43] as potential sources 
of insights for how to get the most out of teaching robots. These 
insights could potentially inform how to design interactions when 
humans are in the teaching role, such that the experience is more 
pleasant and less frustrating. In the context of a user customizing 
their own companion robot by teaching it a new task, it is to be 
expected that individual preferences play a role in the complexity 
of the taught skills, as well as the expectations of the robot. 

6 Limitations 
The user study we conducted in VR involved a simulated robot with 
pre-programmed behaviors that give participants the illusion of 
learning. This introduces some limitations to our approach. For ex-
ample, VR interaction may not completely mimic interaction with a 
physical robot in a real situation. Future studies could implement a 
similar learning situation with a physical humanoid robot to verify 
the similarity of the findings. In a physical real-world setting, the 
simulated learning of our robots may not be sufficiently representa-
tive of more complex future learning algorithms and AI capabilities. 
In terms of the participant sample, a more or less “tech-savvy” sam-
ple could also produce different results. Future work could benefit 
from a larger and more diverse participant sample to further gener-
alize our findings. We also acknowledge that the repetitiveness of 
the task, placing the cubes in the same orientation multiple times, 
could have influenced the results by introducing some aspects of 
boredom or fatigue. For consistency, our study involved teaching 
one task using one teaching method (human demonstrations) and 
one teaching process, which is fully demonstrating the process to 
the robot, followed by a demonstration from the robot of what 
was learned. We acknowledge that this may have restricted partici-
pants, thereby affecting their sense of self-efficacy. Future studies 
can expand on our setting by also accommodating more teaching 
methods. In our study, the robot was pre-programmed to succeed 
as long as the participant continues teaching it. Future work can 
also investigate more and different learning patterns, e.g., a robot 
with a more complex and dynamic learning process, or a robot that 
can make more types of mistakes. 

7 Conclusion 
In this paper, we investigated how humans teaching a student robot 
a new skill are influenced by the robot’s preexisting skills and the 
learning rate of the new skill. From a controlled lab experiment 
(𝑁 = 24) in which robots had to learn object placement from human 
demonstration, we discovered that learning rate plays an important 
role in the perception of robots. Fast learners were perceived to 
be more intelligent, anthropomorphic, and likeable. Additionally, 
participants spent more time and used more attempts to teach slow 
learners than fast learning robots, even though participants re-
ported feelings of frustration while teaching slow robots. Moreover, 
robots achieved lower proficiency with lower preexisting skills 
than higher, and slow learners achieved lower proficiency than 
fast learners. Our findings can help understand how future robots 
capable of learning from human demonstrations will be perceived 
and expected to behave by users. 
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