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Figure 1: BlocklyVR is Virtual Reality programming environment that allows users to be within the scene and interact with
virtual blocks. The interaction is enabled via a VR headset connected to two controllers in a room-size physical space.

ABSTRACT
As programming is typically a static activity in front of a screen,
we perform an initial exploration around the capabilities of block-
based programming in the immersive space using Virtual Reality
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(VR) to make an early charting on how programming could in-
volve moving the programmer’s body. We created a block-based
programming interface in a VR space called BlocklyVR based on
the existing Blockly programming environment. To investigate pro-
grammer performance and experience in BlocklyVR, we conducted
a controlled lab experiment (N = 20) with eight programming tasks
that covered mathematical operations, if-statements, and function
creation. Our initial exploration contributes by classifying move-
ment types made by BlocklyVR programmers and reflecting on how
these movements are related to the programming tasks. Addition-
ally, our data suggests that participant performance in BlocklyVR
was not affected compared to the 2D Blockly, even if participants
were physically moving in VR space. We also found that the virtual
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reality sickness was marginal. Lastly, we identified four types of
interaction that can potentially be employed by VR designers and
developers aiming to convert a static task, like programming at a
desk, into a “mobile” immersive experience.
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1 INTRODUCTION
Researchers in Human-Computer Interaction have a long-going in-
terest in creating engaging interfaces for programming [15, 55, 63].
Two forms of programming interfaces became particularly inter-
esting to explore due to their playfulness and suitability for non-
tech-savvy users: block-based and tangible. For this, researchers
proposed and developed numerous block-based and tangible pro-
gramming interfaces that made programming more accessible to
non-programmers [4, 5, 29, 47, 50, 65, 74, 75]. Block-based interfaces
conceptually focus on making programming easier by presenting
programming concepts as visually distinct blocks. However, the tra-
ditional method of engaging with the blocks on a computer screen
using a mouse or touch interface hinders the user’s ability to fully
immerse themselves in a physically engaging way rather than an
external party behind the glass screen [52]. Tangible programming
interfaces bring the interaction away from the computer screen
but are limited by the physical materials representing the program
constructs [68]. Virtual Reality (VR) provides an interesting oppor-
tunity to create engaging programming interfaces without these
constraints. Several projects have begun to explore the combination
of VR and block-based interfaces [60, 64, 67, 72]. However, there
still needs to be a greater understanding of what advantages the
Virtual Reality space can introduce for block-based programming.

Previously, researchers have employed block-based program-
ming languages in educational settings for learning programming
[43, 53, 58], and as an easy-to-use approach for constructing simple
software for end-users, e.g., hobbyist electronic projects, mobile
apps, and games [5]. Likewise, tangible programming interfaces
have been used for similar purposes, such as fostering computa-
tional thinking [24, 46, 70], creating 3Dmodels [35], and supporting
visually impaired people [25]. Tangible interfaces can foster physi-
cal sensemaking and engagement [7, 22, 48], but are limited by the
physical constraints imposed by the materials. VR can provide an
alternative to tangible interaction by facilitating embodied physical
interaction since users can freely move while assembling blocks
into programs. Previous block-based VR interfaces have been en-
gaging for both novice students [72] and K-12 children [60], and
direct object interaction instead of pointer-based interfaces might

be a contributing factor. Incorporating both hands in the interac-
tion [72] and standing up instead of sitting [64] could be additional
advantages, but there is a lack of empirical evaluation confirming
these assumptions.

In this paper, we explore the possibilities and limitations of block-
based programming in Virtual Reality spaces with the long-term
aim of enriching the desk-bound programmer’s work. For this, we
created an early exploratory prototype for interactive programming
in Virtual Reality called BlocklyVR, based on the block-based in-
terface Blockly 1. With this, we aim to facilitate spatial, direct, and
two-handed interaction with programming blocks. To evaluate the
effectiveness of BlocklyVR regarding the extra time the programmer
might spend due to movement in space, we conducted a controlled
lab experiment (N = 20) comparing our proposed system to the
existing 2D Blockly programming environment. Additionally, for
the BlocklyVR participants (N = 10), we measured physical activity
and conducted video observations to identify types of movements
in a physical programming environment. We found that task com-
pletion time is comparable between Blockly and BlocklyVR, except
for one task characterized by low complexity and unproductive
movement. We also classified four distinct types of interaction and
movement in BlocklyVR. Our findings suggest implications for effi-
ciently incorporating physical activity in productive VR interfaces,
which sets a future research direction for designing Virtual Reality
systems.

2 RELATEDWORK
Although few empirical evaluations have focused on exploring
block-based programming in Virtual Reality (VR) and its influence
on user performance and physical movement, researchers have
created and investigated many systems to support block-based,
tangible, and VR programming. In this section, we outline these
two pillars of the previous work we build on in this paper: (1)
block-based & tangible programming and (2) programming in VR.

2.1 Block-based & Tangible programming
Block-based programming grew from the MIT MediaLab on LogoB-
locks research in the 1980s [47]. Seymour Papert, one of the princi-
pal creators of the Logo programming language used in LogoBlocks,
stated that he intended to create an “immersive environment” for
learning mathematical concepts [49]. It has gained significant pop-
ularity in the last decade due to the rise of platforms like Alice [5],
Scratch [47], Snap! [29], and Blockly [4, 75]. These platforms offer
versatile interactive environments for novice users to explore pro-
gramming for robotics [61, 75], tangibles [39], IoT [4, 59, 74], and
the LEGO Robotics ecosystem [65].

Block-based programming is conceptually based on making pro-
gramming easier and more accessible. Drawing on the principles
behind the move from text-based to graphical user interfaces in
the 1980s, it relies on direct manipulation, with a main principle
of having the “knowledge” - in this case, the programming syn-
tax - available in the “world” (on the screen), rather than in the
“head” [62]. Apart from the direct manipulation mode of finding
and arranging commands, the blocks draw on principles of map-
ping, grouping, and visual affordance, with the shapes and colors of
1https://developers.google.com/blockly
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the blocks indicating their type and affordances. However, today’s
block-based programming experience primarily focuses on the 2D
space, where a user sits in front of a screen and indirectly manipu-
lates the blocks using a mouse and keyboard or touch input on a
smartphone or tablet [2]. In our work, we go beyond the interaction
“behind the glass” and explore the possibilities of embodied physical
engagement with blocks for programming as we explore the design
space of “raising programmers from the desk”.

One possibility of incorporating physical interaction for pro-
gramming is through tangible interaction. Along with the devel-
opment of block-based interfaces, researchers employed tangible
interaction for learning to program for over 30 years [34, 51] and
discovered that it could foster enhanced physical sensemaking and
engagement [7, 22, 46, 48]. Using Virtual Reality sacrifices some of
the richness of touching and sensing physical material but could
still provide an embodied experience compared to a sedentary desk-
top setting [52]. Some affordances of a tangible interface can also
be mimicked in VR. For example, audio and haptic feedback can
simulate weight sensations [73]. More importantly, since all mate-
rial is virtual in VR, it facilitates dynamic modifications central to
any programming activity, e.g., interface actions such as making
copies, changing the behavior of objects, and changing shape and
size related to object manipulations, which we build on in our work.

2.2 Programming in Virtual Reality
Programming in Virtual Reality covers a plethora of programming
activities, such as live programming, virtual scene creation, code
comprehension, and learning. Live programming [23] provides im-
mediate feedback on output changes and the benefits of immersion
in the virtual space. For example, Castelo-Branco et al. [10] studied
live programming in VR for architectural 3D models and received
positive feedback from end-users. However, users found using a
physical keyboard cumbersome and suggested direct manipulation
techniques for code interaction, which we employed in our work.
Another research direction explored the creation of virtual scenes
with virtual controls. For instance, EngtangleVR [11] used a hybrid
approach in which certain details of VR scenes can be edited with
sliders and checkboxes within the virtual environment and the rest
of the scene – with a visual-programming interface. The example of
FlowMatic [77] put a visual-programming interface inside the VR
scene. Users can thereby directly program the behavior of objects in
the scene without taking off their VR headsets. Some projects have
employed VR for program comprehension [19] that entails tracing
a program flow [12] by visualizing it on a 3D spatial layout. For
example, Dominic et al. [16] compared programmers’ comprehen-
sion of Java code in VR with a desktop setting and found that their
implementation made comprehension more difficult. In contrast, a
study on ExplorViz [31], a tool for 3D-visualizing Java code in VR,
demonstrated that participants solved more comprehensive tasks
correctly in ExplorViz compared to browsing the textual code base,
but zooming in and out of the 3D-visualization was found cumber-
some. Lastly, research projects focused on learning programming
in immersive spaces [37, 64, 67, 71]. For example, Cubely [72] and
VR-OCKS [60] are two block-based environments that allow the
users to walk around and directly interact with the blocks instead

of sitting down and interacting with a ray-cast pointer. Partici-
pants preferred Cubely over the desktop interface Blockly due to
its immersiveness and two-handed interaction [72].

While Cubely and VR-OCKS are similar to our system, our ques-
tions are different, and the data we gather for exploratory purposes
enables us to draw specific early lessons on transferring a desk-
bound activity to VR. We introduce BlocklyVR, a Virtual Reality
version of 2D-based Blockly for desktops, as an initial step in ex-
ploring non-desk-bound programming. To assess its effectiveness,
we compare the performance with Blockly. Since we designed our
interface to use physical space for interaction, we measured users’
physical activity and related that to performance and activities.
The following sections detail design considerations, our proposed
system BlocklyVR, and evaluation.

3 BLOCKLYVR
BlocklyVR facilitates programming in Virtual Reality through im-
mersive interaction with virtual blocks. The interaction is enabled
via a VR headset connected to two controllers in a room-size physi-
cal space. In the following four subsections, we describe the design
considerations for BlocklyVR, the programming environment, in-
teraction concept, and implementation.

3.1 Design considerations
While the basic structure and appearance of BlocklyVR are similar
to the desktop-based Blockly interface, we have introduced several
design considerations necessary for block interaction in a VR space.

3.1.1 Spatial working area. The first design consideration concerns
physical space for walking and interaction in a 3D environment.
For example, to drag and drop blocks, a user can walk near a block
and move it to a new location. A spatial work area should allow
users to position blocks nearby and at any height to iterate different
solutions quickly in 3D space avoiding arm fatigue and discomfort
[21, 36].

3.1.2 Direct and two-handed interaction. Using a pointer in 3D
space for selection is common but can be frustrating [64] and
time-consuming [67]. Therefore, the second design consideration
concerns walking to the blocks for direct manipulation. Directly
grabbing the blocks, e.g., using controllers, mimics a tangible pro-
gramming experience, which could support users’ sense-making
[22, 48] and engagement [60, 72]. While block-based programming
in 2D involves interaction with a mouse with one hand, 6DOF VR
controllers and 3D space facilitate the use of both hands for the
manipulation of blocks. For example, users can interact with blocks
by holding them in one hand and manipulating them with the other,
as typically done in everyday interaction [26].

3.1.3 Block design. The third design consideration concerns visual
cues indicating a possibility of connecting the blocks. Compared
to 2D space, in 3D space, there is a need to design cues indicating
which blocks can be connected, especially when viewed from dif-
ferent angles. As in Blockly, blocks have “connectors”, i.e., zones
where they can attach to other blocks.

3.1.4 Text input. Despite the advantages of block-based program-
ming in VR, the text input still needs to be improved since users
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a b c

Figure 2: BlocklyVR facilitates three main interaction methods: (a) connecting, (b) disconnecting and (c) duplicating blocks.

do not see a physical keyboard. Block-based programming requires
less text input than textual programming but is still necessary to
declare variables and functions or to set values. Therefore, a vir-
tual keyboard is the fourth design consideration for the text input
to take users’ input from pointing at virtual keys. This has been
shown to be more efficient than alternative text-input solutions for
VR [66].

3.2 Programming environment
In BlocklyVR, users can create programs by assembling and mod-
ifying blocks using the same logic as in Blockly. The BlocklyVR
environment consists of a workspace area, a menu of programming
blocks, a task instruction screen with input and output, three tables
that function as boundary cues, and two trash cans (Figure 3). The
workspace occupies around 6 x 2m of physical space. To delete
blocks, a user can walk up to the trash cans and put them inside. A
menu for selecting blocks is placed on the left side of the environ-
ment and has the following categories: logic, loops, math, text, lists,
variables, and functions. Additionally, we increased the size of the
blocks compared to their 2D counterparts, e.g., a while-loop block
is 2.5cm in Blockly and 17cm in BlocklyVR, to ease selection in
mid-air with controllers and increase text readability on the blocks
due to the VR-headset resolution.

BlocklyVR features a set of programming tasks that users can
complete. Each task has a test suite that checks if the assembled
block code is correctly given different combinations of input values.
A task screen with instructions is placed in the center where partic-
ipants can assess their work progress. The task screen also updates
and displays the current test suite’s input, output, and expected out-
put. If all tests have passed, the display changes, a sound is played,
and the user can advance to the next task. A button underneath the
table is used for proceeding to the next task.

3.3 Interaction Concept
From the interaction perspective, BlocklyVR facilitates three main
interaction methods: (1) connecting, (2) disconnecting, and (3) dupli-
cating blocks. To aid precision selection, the controllers are visually
represented as a “ball and chopstick,” i.e., a short ray cast.

3.3.1 Connection/Disconnection. To connect the blocks, a user
must first bring them close to each other. This is done by selecting
a block nearby by holding the trigger button on the controller and

Figure 3: The BlocklyVR consists of: (1) a work area (the
walkable workspace area is approximately 6x2m) with three
tables acting as boundary cues for the area, 2) a menu with
different block categories (logic, loops, math, text, lists, vari-
ables and functions), 3) a task screen with task instructions
and test suite input and output for users to self-assess their
work, 4) two trash cans for discarding blocks.

repositioning the block within range of another block. When two
blocks’ "connectors" (connection areas) are within range (5cm), a
green line appears, indicating they can be connected (Figure 2 a). In
the presence of a green line, a user can release the trigger button on
the controller to connect the blocks. Disconnecting blocks requires
the user to use both hands. For this, users hold a block structure
(two or more connected blocks) with one hand and use the other
hand to select a block they would like to disconnect with a trigger
button and move it outside of the connecting range while holding a
trigger button (Figure 2 b). We made the blocks slightly transparent
so the connectors would be visible from all angles.

3.3.2 Duplication. To duplicate a block, a user has to grab it with
both hands and "drag out" a copy of it. When the drag starts, a line
appears, and to complete the duplication, the line has to be stretched
enough until it snaps (Figure 2 c). Audio and haptic feedback is
used to indicate how far the line is from snapping.
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Figure 4: Visual overview of all tasks in BlocklyVR. The tasks included summation with and without menu selection, debugging,
matching numbers and functions, ordering numbers, calculating area, and creating functions.

3.4 Implementation
BlocklyVR consists of the VR application created in Unity and a
Node.js web server 2. When blocks are added or modified in the VR
environment, the resulting code is translated into the JavaScript
version of Blockly and sent over HTTP to the server. The server
executes the JavaScript code, runs a test suite for a given task,
and returns the results of the tests. The server also hosts a web
interface built in React for 2D Blockly. This interface includes a
task instructions panel we used in the user study.

4 EVALUATION
To explore the impact of BlocklyVR on users’ programming per-
formance, we conducted a controlled lab experiment comparing
it to the regular 2D Blockly on a desktop. To further understand
the impact of BlocklyVR on participants’ interactions and task per-
formance, we also measured participants’ physical activity and
compared it with recorded video material. Lastly, interviews with
BlocklyVR participants were conducted to provide qualitative feed-
back. The research question for this experiment is: “How does VR
block-based programming influence users’ programming performance,
physical activity, and experience?”

4.1 Participants
We recruited 20 participants (15 male, 5 female) aged between 21
and 41 (𝑀 = 26.2, 𝑆𝐷 = 5.7) with no block-based programming
experience and limited prior experience of virtual reality (VR). The
participants were recruited through the advertising channels of our
institution. Participants received 15e cinema voucher as compen-
sation for their participation.

4.2 Study design
For programming performance, the studywas designed to be between-
subject with one independent variable: programming environment.
The first type of programming environment included Blockly 3 as
a baseline for existing programming practices on the 2D screen.

2https://github.com/(authorname)/CodeVR
3https://developers.google.com/blockly

The second one is our proposed BlocklyVR programming environ-
ment as described in the previous section. The primary objective
for comparing BlocklyVR to Blockly is two-fold: (1) Blockly is a
state-of-the-art block-based programming environment that facili-
tates programming without writing a code and, thus, comparing it
to its VR version will help us better understand if VR can improve
users’ performance and experience due to its immersive nature and,
and (2) By comparing a desktop activity (in this case programming)
to the same activity in VR, we aim to understand how to design
future VR workspaces and how physical movement as an integral
part of solving a task affects user performance and experience. We
evaluated both programming environments in the between-subject
study to decrease the influence of fatigue since participants had
to finish eight programming tasks within 30 minutes and to avoid
learning effects since we aimed to provide participants with the
same set of tasks for comparability reasons. These tasks included
summation with and without menu selection, debugging, matching
numbers and functions, ordering numbers, calculating area, and
creating a function (see Table 1 for textual and Figure 4 for a vi-
sual overview of the tasks). The tasks were always completed in
the same order (from 1 to 8). We designed each task to increase
in difficulty from the previous. The control group using Blockly
consisted of 7 male and 3 female participants aged between 22 and
41 (𝑀 = 24.4, 𝑆𝐷 = 5.2), and the second group using BlocklyVR
consisted of 8 male and 2 female participants aged between 21 and
38 (𝑀 = 28.1, 𝑆𝐷 = 5.7).

4.3 Apparatus
For the Blockly setup, we used a 16-inch Macbook Pro with a screen
resolution of 2560 × 1600 and a mouse. For the BlocklyVR setup, we
employed Oculus Quest 2 with both controllers and an accelerome-
ter placed on the right hip to measure physical activity.

4.4 Measurements
We measured the following variables:

• Task completion time (in sec): for each task, we mea-
sured the time it took participants to finish it. The timer
started each time a "load next task" button was pressed and
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Task Description
1: Multiplication The function should return the value of 2 x 3.
2: Summation without the menu The function should return a sum of two variables.
3: Summation with the menu The function should return the sum of two variables, but in this case, users had to

find the corresponding blocks in the menu.
4: Debug The function should return true if the given age is ≥ 62.
5: Match number and function Connect numbers with functions that return the number. For example, a function

that returns six should be matched with the number 6.
6: Order numbers Move the number blocks in ascending order.
7: Calculate area The function should return the area of a rectangle, and if any of the sides are less

than zero, it should return 0.
8: Create function The function should call a new function you must create. The new function should

be called ’foo’ with the inputs ’a’ and ’b’ and return return true if a > b and be false
otherwise.

Table 1: The overview of tasks that participants had to solve in the experiment for both programming environments.

stopped when the task was successfully completed. During
the experiment, all tasks were completed successfully.

• Physical activity duration (in %): for each task in Block-
lyVR, we measured the percentage of time performing physi-
cal activities using acceleration along all three axes using an
ActiGraph GT3-X accelerometer strapped to VR participants’
right hip [57]. Acceleration data is commonly labeled accord-
ing to established cut-off points that correspond to sedentary,
e.g., standing still, low physical movement, e.g., light walk or
slowmovements, andmoderate physical activity, e.g., regular
walk or movements with higher acceleration [57]. We used
these cut-off points to determine the participants’ physical
activity levels during our experiment. This method allowed
us to measure the fraction of time participants remained
still and performed low and medium physical activity. By
low physical activity, we refer to slow movements in the
space with low acceleration andmoderate – movements with
higher acceleration. Since participants sat at the desk for the
condition with the Blockly, the hip movement is essentially
zero, and we, therefore, did not add an accelerometer for
comparison as it would be redundant [30].

• Virtual Reality Sickness: participants filled in the ques-
tions from the Simulation Sickness Questionnaire (SSQ) be-
fore and after using BlocklyVR to assess their general state of
motion sickness. To calculate the SSQ score [40], we used the
formula from [6]. Total SSQ scores of 20-30 reflects minimal
to moderate motion sickness and greater than 40 suggest “a
bad simulator” [9].

Additionally, we video-recorded user activities with BlocklyVR
from outside and inside the VR headset. To further understand the
impact of BlocklyVR on participants’ interactions and task perfor-
mance, we also measured participants’ physical activity and com-
pared it with recorded video material. Combined with the videos,
the accelerometer data describe how participants moved and inter-
acted during each task. Additionally, we conducted a thematic anal-
ysis on the video data [8] to identify distinct types of user activities.
This allowed us to categorize the type of interactive user activities
the participants performed second by second, e.g., interaction with

the menu, and compare that data with the corresponding accelera-
tion for that second. This allowed us to build a descriptive picture
of how movement was incorporated in block-based programming
activities in VR and whenever it could be beneficial. Lastly, in the
end of the experiment, we collected qualitative feedback from the
participants about difficulties they experienced while interacting
in BlocklyVR, how VR influenced their block-based programming
experience, and what they liked and disliked about BlocklyVR.

4.5 Procedure
After obtaining informed consent, we collected participants’ demo-
graphic data. We then provided a brief overview of the program-
ming environments and types of interaction. Participants famil-
iarized themselves with a programming environment (Blockly or
BlocklyVR, respectively) in a test task that required connecting
two blocks so that a function "SayHi" returns "Hello World." Once
the participants felt comfortable, we started experimental condi-
tions. During the experiment, participants had to solve eight tasks,
one after the other. BlocklyVR participants were asked to answer
questions about the system’s usability at the end of the experiment.
Each experimental condition lasted approximately 30 minutes.

4.6 Data analysis
We used t-tests to compare task completion time between Blockly
and BlocklyVR, given that the data was parametric. To compare dif-
ferences in movements per each task, we used the one-way ANOVA
as an omnibus test and t-tests for post-hoc analysis with a Bonfer-
roni correction, given the parametric nature of the data. For the
non-parametric data from the SSQ, we applied a Wilcoxon signed-
rank test to compare the scores before and after interaction with
BlocklyVR. For the analysis of the video recordings, one of the
co-authors did a second-by-second annotation of the video feed
based on the activities that participants were doing while solving
the tasks. This included the following steps: (1) Looking at start
second and watching a bit to see what the person is doing, (2) When
a participant changed an activity, minutes and seconds from start to
finish for the activity were marked on the video, (3) Annotation of
the activity, e.g., changing a perspective or turning a head around,
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Figure 5: Task completion time per each task using Blockly and BlocklyVR.

if appropriate label did not exist yet, (4) Checking if some of an-
notations could be combined into the same category. These steps
were repeated until finished. Lastly, for the analysis of qualitative
feedback, two of the co-authors independently grouped the quotes
from the participants into three groups: (1) difficulties they expe-
rienced while interacting in BlocklyVR, (2) changes in interaction
while programming in Virtual Reality, and (3) aspects they liked
and disliked about BlocklyVR, based on the questions we asked
them after the study.

5 RESULTS
We discovered that user performance in task completion time in
BlocklyVR was comparable to Blockly. Moreover, our results indi-
cate low and moderate physical activity for participants in Block-
lyVR during 28% of task time on average. Lastly, we identified four
distinct types of interaction in BlocklyVR based on the video analy-
sis. We outline these results in detail in the following subsections.

5.1 Task completion time
We discovered that participants spent a comparable amount of time-
solving all tasks in Blockly or BlocklyVR (𝑝 > 0.05), except for Task
3. For Task 3, which required participants to sum two numbers
while bringing blocks from the menu, we found that participants
required more time in BlocklyVR (𝑀 = 86𝑠𝑒𝑐, 𝑆𝐷 = 27) than with
Blockly (𝑀 = 50𝑠𝑒𝑐, 𝑆𝐷 = 19), as shown by a statistically significant
t-test (𝑡 (16.4) = 3.34, 𝑝 < 0.01). The summary of results is shown
in Figure 5.

5.2 Physical activity duration
Our results indicate that using BlocklyVR, participants’ low and
medium physical activity was higher for Task 3 and for Task 5, in
which participants had to match numbers and blocks, compared
to the other tasks. We considered sedentary activity (or no move-
ment) as the complement to the low and moderate physical activity,

resulting in a total time consisting of no movement + low physical
activity + moderate physical activity.

5.2.1 Sedentary activity. We discovered that participants remained
still the least amount of time in Task 3 (task completion time was
also lower in BlocklyVR for Task 3), which required finding and
bringing blocks from the menu before connecting them. Task 5,
which required matching numbers with functions correspondingly,
also resulted in less sedentary time compared to the other tasks.
The One-way ANOVA has shown statistical significance among the
tasks (𝐹 (7, 72) = 7.4, 𝑝 < 0.001). The pairwise comparisons have
indicated statistically significant differences for Task 3 compared
to Task 1 (𝑝 < 0.01), Task 2 (𝑝 < 0.01), Task 4 (𝑝 < 0.01), and Task
6 (𝑝 < 0.01). Additionally, we found that participants remained still
more for Task 1 than Task 5 (𝑝 < 0.05) and Task 2 (𝑝 < 0.01). Lastly,
participants remained still more in Task 2 than in Task 8 (𝑝 < 0.05).

5.2.2 Low physical activity. As for the low physical activity (i.e.
slow walk), our results indicate that participants performed more
low physical activity for Tasks 3 and 5, similar to the results for
sedentary activity. The One-way ANOVA has shown statistical sig-
nificance among the tasks (𝐹 (7, 72) = 7.7, 𝑝 < 0.001). The pairwise
comparisons have indicated statistically significant differences for
Task 3 compared to Task 1 (𝑝 < 0.001), Task 2 (𝑝 < 0.001), Task
4 (𝑝 < 0.001), and Task 6 (𝑝 < 0.01). Additionally, we found that
participants were performing more low physical activity for Task 5
than Task 1 (𝑝 < 0.05), Task 2 (𝑝 < 0.05), and Task 4 (𝑝 < 0.001).
Lastly, participants’ low physical activity was higher in Task 8 than
in Task 2 (𝑝 < 0.01).

5.2.3 Moderate physical activity. In line with the above results, we
found that participants’ moderate physical activity was higher for
Tasks 3 and 5. The One-way ANOVA has shown statistical signif-
icance among the tasks (𝐹 (7, 72) = 4.7, 𝑝 < 0.001). The pairwise
comparisons have indicated statistically significant differences for
Task 3 compared to Task 1 (𝑝 < 0.001), Task 2 (𝑝 < 0.001), and Task
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Figure 6: Movement per each task using BlocklyVR.

6 (𝑝 < 0.05). Lastly, participants’ moderate physical activity was
higher in Task 5 than in Task 1 (𝑝 < 0.05).

5.3 Virtual Reality Sickness
We found that virtual reality sickness was minimal after using
BlocklyVR and the difference in the overall SSQ score and the
sub-score of nausea, disorientation, and oculomotor was not sta-
tistically significantly different before and after using BlocklyVR
(𝑝 > 0.05), as shown by Wilcoxon signed-rank test. The overall
SSQ has increased by 2.9 points (Before: 𝑀 = 8.7, 𝑆𝐷 = 11.4, Af-
ter: 𝑀 = 11.6, 𝑆𝐷 = 11.1), nausea decreased by 2.1 (Before: 𝑀 =

7.4, 𝑆𝐷 = 10.4, After: 𝑀 = 5.3, 𝑆𝐷 = 5), disorientation increased
by 4.7 (Before: 𝑀 = 7.7, 𝑆𝐷 = 14.1, After: 𝑀 = 12.4, 𝑆𝐷 = 14.7),
and oculomotor increased by 5 (Before: 𝑀 = 7.6, 𝑆𝐷 = 10, After:
𝑀 = 12.6, 𝑆𝐷 = 12.6).

5.4 Video observations
Based on the video observations, we identified four categories of
interaction in BlocklyVR.

5.4.1 Walking from A to B. We observed participants’ physical
movement from points A to B related to the spatial distribution
of the elements in the virtual environment. By positioning the
menu and trashcans away from the task screen, participants were
“forced” to walk to reach these elements. Moreover, participants
had an opportunity to take multiple objects using both hands un-
like interaction with a mouse in Blockly where only one object
or one-handed interaction is possible. These activities accounted
for 11.4% (SD:2.7%) on average of the total experiment time but
24.9% (SD:12.7%) of the average physical activity amounts (low and
moderate).

5.4.2 Changing perspective. Participants spent time stepping back
and forth to change their viewing perspective as a zoom-in and out
function to get a better overview of the task and interaction space.

Virtual reality facilitated an overview space, in which participants
could easily see connections between the blocks and could look
around to find necessary blocks. It accounted for 8.2% (SD: 3.5%) of
the total time and 15% (SD: 4.9%) of the total physical activity.

5.4.3 2D and 3D interaction. This category accounts for 2D, e.g.,
pointing towards a flat surface, naming a block variable, selecting
an item from a drop-down, and 3D interaction with blocks, such as
moving, connecting, disconnecting, and duplicating them. This is
because they account for different types of interaction within the
space and can lead to different behaviors and types of movements.
2D interaction accounted for 12% (SD: 5.2%) of time and 6.15% (SD:
6.10%) of total physical activity. 3D interactions accounted for 31%
(SD: 8%) of total time, and 22% (SD: 7%) of total physical activity.

5.4.4 Static activity. This category accounts for the situations in
which participants did not interact with anything, e.g., they did not
walk to other locations in the environment but spent time reading
or thinking. It also includes movements unrelated to walking, e.g.,
they rotate their hips, looking around, or take small steps to readjust
their body position. These activities accounted for 38.8% (SD:11.1%)
of time and 20.8% (SD:7.3%) of physical activity.

5.5 Qualitative feedback
Participants stated that BlocklyVR facilitated better visibility and
overview of the programming environment and liked the physical
aspects. They reflected and contrasted BlocklyVR with their previ-
ous experiences using desktop interaction for textual programming.
As some participant mentioned: “I felt it was easier to make sense
out of chaos. That is, if I have a lot of different ideas that I want to
try, then it is easier to pick out the ones that work in VR since I can
walk around them and get an overview.” [P7], “It is pretty easy to
see connections in BlocklyVR, and I think it is because of the depth
of the picture and how you physically move the blocks around.” [P2].
Participants also endorsed the clear shapes and vibrant colors of the
BlocklyVR blocks that improved visibility. However, it was harder
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to read in BlocklyVR due to distances and occlusion from other
blocks.

Participants enjoyed the ease of two-handed interaction in Block-
lyVR for connecting/disconnecting blocks but commented on the
slow text input. For instance, P4 noted: “BlocklyVR was pretty easy
once I grasped the controls. It was pretty efficient to tear apart compo-
nents and rearrange them.”. “Changing numbers and text takes a bit
of time sometimes.” [P9]. Another aspect raised by the participants
was the thinking process in BlocklyVR. As P10 noted: “I believe
that “thinking,” i.e., coming up with the solution in your brain takes a
lot of time in VR than in a normal coding environment, when I need
to think about how to create an algorithm, come up with a problem
solution, detect a pattern, etc. It is easier [on desktop] because I am
comfortable sitting down and can switch to a pen and paper or quickly
search for something in a stack overflow.” Since participants could
walk and zoom in and out, they saw BlocklyVR as better-suited for
progressive evaluation than their previous experience with 2D pro-
gramming environments. As one participant commented: “Literally
stepping back allowed me to see the code from afar like zooming out.
Using the body for that was nice” [P10].

Four participants mentioned problems with the spatial distribu-
tion of objects in the 3D space. For example, P3 stated that: “Losing
things behind me was common, but moving to find them weren’t very
difficult”. Another problem in BlocklyVR was the size of the blocks,
“Since much of the blocks are "meaningless" volume it can be difficult
to interpret the code one has written because it takes up so much more
physical space than regular code.” [P2]. One participant [P5] said
walking to the menu to fetch new blocks felt cumbersome.

6 DISCUSSION AND FUTUREWORK
One of the questions we asked ourselves in this work: Does block-
based programming become slower with the work artifacts (vari-
ables, statements, expressions) spread out in a physical, virtual, or
mixed space? The findings from our study indicate that completion
time was comparable between Blockly and BlocklyVR for most
programming tasks. This challenges the conventional wisdom that
increasing distance between objects decreases efficiency [42, 45,
56, 69]. On desktop, users can quickly move the cursor with sub-
tle hand movements. If user interactions are more efficient on the
desktop, the more interactions a user needs to do for a task, the
slower the completion time will be for BlocklyVR in comparison.
The video observations showed that participants spent more than
60% of the time in BlocklyVR doing user interactions (with blocks
and other elements, changing views, and walking from one point
in space to another). Since more than half of the time was spent
interacting, if the desktop interactions were more efficient than the
VR interaction, task completion times would be faster in Blockly.
This suggests that the interactive techniques we used in Block-
lyVR are comparable in terms of usage efficiency to the mouse and
keyboard for block-based programming without introducing VR
sickness. It could also suggest that some VR affordances supported
BlocklyVR participants to complete the tasks efficiently. We discuss
these results in detail in the following subsections.

6.1 Designing Virtual Reality Workspaces
Another question we asked was about the types of physical move-
ments that block-based programmers would perform in such “desk-
less” programming environments. Our findings indicate that Virtual
Reality is suitable for facilitating physical activity, e.g., active walk-
ing, as in our experiment, for a stationary task of programming with
Blockly by providing an immersive 3D space. This raises a question
of whether more interactivity with the whole body makes a task
more engaging. By looking at the results from our experiment, the
only task completed faster in Blockly than in BlocklyVR was Task
3 (Figure 5). This task also required the most physical activity, 45%
on average of task time. There could therefore exist a threshold at
which physical activity starts to impact task completion time. How-
ever, the task was not mentally demanding and mainly required
fetching new blocks instead of problem-solving. In contrast, Task
5 required more complex problem-solving and generated physi-
cal activity at around 35% of task completion time on average. It
could be that somewhere between 35-45% lies the tipping point
where additional walking impedes performance. Another plausible
explanation is that the intention for movement matters. In Task 3,
participants only walked from the task screen to the menu, while
in Task 5, participants walked to zoom out, to interact with objects,
and while thinking. This could have preserved their focus better
since their eyes remained on the problem [44].

The Virtual Reality sickness was minimal for solving all tasks,
which makes Virtual Reality space a promising environment for
future workspaces that can facilitate both solving a task but also an
increased physical activity with only a VR headset and without a
need to add bulky treadmill or a cycling trainer. The qualitative feed-
back illustrates that these physical user activities were beneficial
for VR tasks. Being able to “zoom out” gave a sense of progressive
evaluation, i.e., making changes and then taking a few steps back
to view the “whole”. This can also be achieved by zooming out with
a mouse in a desktop setting. As the qualitative feedback shows,
there is something special about moving your body for this action.
This suggests that this ability should be considered in other VR
scenarios if enough physical space is available. As Cubely [72] also
suggests, using both hands in interaction was another appreciated
aspect. Humans typically use their dominant hand for operations
and the other hand for stability [26]. This was efficiently incorpo-
rated in BlocklyVR to disconnect blocks and something that could
have contributed to comparable completion time. Lastly, both the
physical aspects, i.e., moving around and interacting in a 3D space,
and the visual aspect, i.e., the large screen space, were well received
and, as one participant commented, made it easier to “make sense
out of chaos”. Future studies should explore these advantages in
isolation or a different context than block-based programming. This
will help us to better understand how we can potentially design
future VR workspaces by possibly making them more interactive,
as shown by our results.

6.2 More Movement but at What Cost?
Participants in VR had difficulty reading information on the blocks
and entering text. We set the blocks’ size to facilitate convenient
interaction; however, smaller block sizes may function equally well.
But the problem would then be the text size on the blocks, as some
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comments already suggested that it was hard to read from a distance.
This is a well-known problem of XR applications in general [41],
but it becomes especially prevalent when incorporating a spatial
work area. Reading was also a problem when blocks occluded the
line of sight. Participants needed to be more accustomed to looking
for information in the periphery, similar to other VR block-based
interfaces [64]. Our participants did not express discomfort as in
[64], likely because turning around while standing is easier than
sitting down. One participant commented, however, that sitting
supported thinking, and the lack of sketching with pen and paper
made problem-solving harder in VR. For more complex tasks, the
necessity of sketching tools is more urgent. Experimenting with
virtual pens could be one way to address this issue [17, 20]. Virtual
pens may also be a more efficient text-input technique than the
virtual keyboard. Most negative feedback was concerned with the
text-input functionality of BlocklyVR. Typing on a regular keyboard
is much faster than various interaction techniques for mid-air text-
input[1]. Even if VR can bring several benefits, such as walking
for visibility and more physical two-handed interaction, efficient
mid-air text input is crucial for bringing programming into VR,
which has to be further explored in future work.

6.3 Virtual Reality for Physical Activity
Another aspect of incorporating physical activity in Virtual Reality
is the potential for supporting non-sedentary interaction [32]. In
other words, how can a more healthy lifestyle be integrated within
typically sedentary work settings, e.g., offices. HCI researchers have
conceptualized two main approaches to support physical activity:
(1) in conjunction and (2) during work activities. The first approach
focuses on providing tools and support in conjunction with office
life, i.e., not at the same time as the work activity. Examples include
prompts that nudge users to take active breaks [13], gamified health
tracking for colleagues [13], and providing space for sports and
exercise close to the office [76]. The second approach focuses on
supporting physical activity during the work activities. Equipment
such as treadmills and indoor bikes [13, 28], support tools for walk-
ing meetings [14, 27], and tangible email cards [38] are examples of
such approaches. Our approach falls into the second category, inte-
grating physical activity during a hypothetical work activity. While
the use of block-based programming is scarce among professional
programmers, the insights from this study could serve as a start-
ing point for exploring physical interaction in real contexts. In the
context of block-based programming, we have shown that physical
activity can be used for interaction and not merely as an add-on
activity independent of the task, e.g., treadmills and indoor bikes.
This is especially important since movement unrelated to the users’
cognitive focus can be mentally demanding [56] or distracting [44].
As for the physical activity types, most of the physical activity
(75%) came from productive activities (e.g., getting an overview,
2D and 3D interactions while thinking) instead of simply walking
from A to B. This explains why movement in BlocklyVR did not
impact performance negatively. In future studies, exploring inter-
active techniques and technologies to integrate physical activity
into productive activities is relevant.

We also asked a more general question on what we can learn
from transferring a desk-bound activity to VR. What could the hy-
pothetical health impact be if non-sedentary interfaces were used
instead of sedentary ones? There are two forms of health hazards
in our modern sedentary lifestyle. One is sitting or standing too
long during the day (sedentary behavior), and the other is lack of
exercise [18, 54]. In our study, participants were physically active
around 28% of the time (figure 6). Most of this physical activity was
classified as light, i.e., equivalent to a slow walk. In terms of reduc-
ing sedentary behavior, this light activity is sufficient for breaking
up prolonged sitting or standing periods. Sedentary behavior is
especially damaging after more than 7-9 hours per day [18], and
minimizing daily sitting time can make a real difference. For exer-
cise, however, moderate- or vigorous physical activity is needed.
We did measure some moderate physical activity (brisk walking) in
the study. Still, we believe there are probably more efficient ways of
using VR to exercise, for example, through exergames [3, 76] and
physical activities [33]. Intensive physical activity is likely distract-
ing and might yield unintended side effects, such as users moving
less the rest of the day because they get tired using the VR interface.
When prototypes for non-sedentary interaction are mature enough
to be tested in real-world scenarios, health implications should be
studied in long-term case studies to control these side effects.

7 LIMITATIONS
Participants spent around 30 minutes in BlocklyVR, and a longer du-
ration could impact fatigue. Finding when users get tired and where
their focus of attention lies using eye-tracking can be tested in fur-
ther studies. The study consisted of a selected set of programming
tasks. This allowed us to compare completion time with Blockly.
Future studies could try different tasks or try new application sce-
narios. For example, exploratory scenarios could be tested, where
participants can program freely, e.g., programming a VR scene. We
conducted our evaluation with adults with no prior experience
in VR and block-based programming, and the future work should
explore it for other audiences, e.g., children. Lastly, BlocklyVR re-
quires a physical space which might only sometimes be available
compared to Blockly, which can be used in a limited physical space.
Thus, future work might later consider ways of comparing mouse
movements in Blockly to the physical movements in BlocklyVR.

8 CONCLUSION
In this paper, we explored programming in a virtual space by trans-
ferring a system for block-based programming in Virtual Reality –
BlocklyVR. To determine whether the physical movement impacts
the task performance, we conducted a controlled experiment com-
paring it to the existing 2D version of Blockly. Our results indicate
that, despite a movement-centered interface, the task completion
time was comparable between Blockly and BlocklyVR, except for
one task characterized by low complexity and unrelated movement.
We also contribute to “desk-to-space task transfer” by identifying
four distinct types of interaction in BlocklyVR. Our findings sug-
gest implications for efficiently incorporating physical activity in
productive VR interfaces, which sets a future research direction
for transferring complex desk-bound intellectual tasks to Virtual
Reality.
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