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ABSTRACT
Walk-in-Place is an established locomotion technique for walking
in virtual environments, as it incorporates body motion similar
to regular walking. Although there is extensive research on the
performance and experience of walking in virtual reality spaces, it
typically requires minimal-to-moderate physical movement, e.g.,
stepping forward and turning around, to explore virtual spaces.
Therefore, the question we ask ourselves in this work is how user
experience and performance are affected when the user is actively
moving in place. In this paper, we explored three body-steering
methods for jogging-in-place in virtual environments: (1) head-,
(2) hand-, and (3) torso-based. To investigate the performance of
the proposed body-steering methods for jogging in virtual reality,
we conducted a controlled lab experiment (N = 12) to assess task
completion time, number of steps, and VR sickness. We discovered
that hand- and torso-based methods require fewer steps than the
head-based method, and the torso-based is slower than the other
two. Moreover, the number of collisions and virtual reality sickness
were comparable among the methods.
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1 INTRODUCTION
Locomotion is the self-propelled movement in virtual environments
(VE) [21] and is considered one of the most important elements of
Virtual Reality experiences. Moving freely through virtual spaces
has been for decades a central appealing feature of many applica-
tions, such as video games [36, 42]. However, virtual movement can
only partially be mapped to physical movements because virtual
reality environments allow for infinitely large spaces and physi-
cal movement is limited by the boundaries of the tracking space
in the real world. Searching for a better mapping is part of cur-
rent research. To accommodate differences between the virtual and
physical space, researchers have introduced artificial locomotion
techniques [1, 14, 22, 24, 70] with “Walk-in-Place” being a common
locomotion technique that incorporates body motion similar to
regular walking [56]. This technique is similar to normal bipedal
walking but without requiring much space and has been found
to reduce motion sickness [12, 51]. Although there is extensive
research on the performance and experience of walking in virtual
reality spaces, it typically requires minimal-to-moderate physical
movement, e.g., step forward and turn around, to explore virtual
spaces. Therefore, the question we ask ourselves in this work is
how user experience and performance are affected when users are
actively moving in place while jogging, given additional impact due
to vigorous-intensity physical movement. We explore this question
using the example of jogging in place, which requires constant
lifting of the feet to move forward and body control to maneuver.

In this paper, we explore the body-based locomotion methods
for jogging in place in virtual reality environments. For this, we
implemented three body-steering techniques while physically mim-
icking jogging in place based on different body parts: (1) head-, (2)
hand-, and (3) torso-based. The hand-based method requires hold-
ing a smartphone in the direction of jogging; with the head-based
method, participants run in the direction indicated by their head,
and the torso-based implies body-steering using the upper body. To
investigate the efficiency of these methods while jogging in place in
virtual reality, we conducted a controlled lab experiment (N = 12) to
assess the task completion time of jogging, number of steps, number
of collisions with virtual objects, the usability of the body-steering
methods, and the virtual reality sickness induced the jogging experi-
ence. Our results show that participants were faster with hand- and
head-based methods than with the torso-based method. Moreover,
they made more steps with the torso-based method than the other
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two. The usability of the torso-based method was rated lower than
the other two. Lastly, the number of collisions and virtual reality
sickness were comparable among the methods. We outline these
results in detail in the following subsections.

Our main research contributions include:
• Three body-steering locomotion methods for jogging-in-
place in virtual environments.

• An empirical evaluation of three proposed body-steering
locomotion methods for jogging in virtual environments
focused on quick and precise movement without increasing
virtual reality sickness.

2 RELATEDWORK
In this section, we provide an overview of (1) locomotion methods
in Virtual Reality and (2) controller- and body-based steering in
virtual environments as a basis for jogging experience.

2.1 Locomotion Methods in Virtual Reality
There is a multitude of locomotion techniques in virtual reality
(VR), ranging from walking in place [60], moving tiles [24] and
shoes [25], leaning in chairs [31, 67], using fingers [29, 74] and
controllers to simulated walking [55]. They typically fall under the
categories of discrete and continuous movement through virtual
space. The discrete methods, often referred to as teleportation [9],
facilitate covering virtual distances in “jumps” without moving in
the real world, using controllers [9, 17], feet [11, 66], gates [26],
or static portals [16]. The continuous locomotion techniques [7],
such as redirected [2, 34, 43, 49, 57], scaled [1, 71], or in-place [5, 24,
44, 55, 60, 63] walking, facilitate continuous movement in virtual
environments by walking on one spot or in circles. Although there
is extensive research on the performance and experience of using
discrete and continuous techniques, they typically require minimal
tomoderate physical movement to explore virtual spaces. Therefore,
the question we ask ourselves within the scope of this paper is
how user experience and performance are influenced when users
are actively moving in place. We explore this question with the
example of jogging-in-place, which requires constant lifting of feet
to move forward and body-steering to maneuver. In the following
subsection, we outline existing controller- and body-based steering
methods, which our work builds on.

2.2 Controller- and Body-based Steering in
Virtual Environments

In locomotion, steering plays an essential role in indicating the
direction of movement in virtual environments. Previous work
has introduced many steering methods in virtual reality, including
controller- and body-based methods. Controller-based methods
are predominantly used for teleportation [10, 17, 39] that utilizes
a form of hand-directed steering in which the user points in the
desired direction and subsequently teleports there instantaneously
or continuously. Such systems facilitate travel in virtual spaces
in “jumps”, if used for discrete teleportation, or continuously for
continuous locomotion [10, 17, 39, 55]. Although these methods
are commonly used in many VR applications [10, 46], reduce mo-
tion sickness [39] and enhance the user sense of control [10], they
occupy one hand with holding a controller while moving, which

disables two-handed interaction and leads to lower realism of the
VR experiences [10, 35, 53]. To overcome this limitation, previous
research has introduced and evaluated locomotion methods that
do not require holding a controller in one hand and alternatively
employ other parts of the body to facilitate implicit and natural
locomotion in virtual spaces [56, 62, 65], e.g., using feet [11, 66],
head, or torso [69]. For example, when comparing torso-directed to
head-directed steering, Williams et al. [69] found the torso-directed
steering to decrease spatial awareness. Usoh et al. [65]) found that
users experienced easier navigation of a virtual space using head-
direction over hand-direction. However, hand-directed steering has
outperformed head-directed steering in a relative motion task, i.e.,
users could move easier in relation to an object when they could
look at the object and move in another direction [7]. As for the
torso-based steering, Razzaque et al. [50] used torso-directed steer-
ing when implementing redirected walk-in-place, in which they
attached a tracker to the back instead of the torso, which they found
was a better representation of the user’s body orientation [45]. They
also found that perceived presence increased compared to using a
joystick. Another recent study by Kitson et al. [32] compared torso-
and head-directed methods but found no significant differences.

Our work is closely related to walk-in-place methods that mimic
normal walking without much need for physical space [12, 13, 27,
41, 58, 69, 72]. Since users have to walk in place, i.e., imitate walking
without not taking forward steps, researchers have explored step
detection methods to map the user walk-in-place steps to virtual
locomotion speed. This requires the user step detection and an
algorithm to convert it to an appropriate speed. In general, these
methods can be split into two categories: (1) systems that detect
foot-ground contact and (2) systems that track continuous move-
ment [45]. Foot-ground systems track the user’s stepping speed
based on load sensors embedded in the platform, for example, phys-
ical walking platforms or Wii Balance Boards [3, 6, 69]. Contin-
uous movement systems use Inertial measurement units (IMUs)
that include accelerometers and gyroscopes or computer vision
tracking to determine steps, e.g., by tracking the user’s head move-
ment [37, 62, 64], heel velocity [15, 30, 68], or full body [33, 73, 76].
Step detection methods based on IMU sensors are more reliable
than computer vision-based methods. The head-based step detec-
tion has high tracking accuracy and only requires sensor data from
the VR headset as input [37]. In our work, we explore body-steering
methods to facilitate a close-to-reality jogging experience in which
build on the success of using body parts for steering continuous
movement in virtual spaces. These methods include hand-, head-,
and torso-steering. However, since jogging-in-place introduces ad-
ditional impact due to the vigorous-intensity physical movement,
we need a better understanding of how body-steering methods
affect user experience and how effective these methods are regard-
ing task completion time, accuracy, and virtual reality sickness.
In the following, we outline the body-steering methods and the
experiment for jogging-in-place.

3 EVALUATION
In this work, we aim to extend the advantages of existing loco-
motion methods for jogging in virtual reality. This will require a

372



Jogging-in-Place: Exploring Body-Steering Methods for Jogging in Virtual Environments MUM ’23, December 03–06, 2023, Vienna, Austria

A B C

Figure 1: We explored three body-steering methods for jog-
ging in virtual environments based on: (A) head (left), (B)
hand (center), and (C) torso (right) movements. The HMD
(Head-Mounted Display) method allows steering by turnings
the user head left and right, the hand – by turning the smart-
phone in the hand in the direction of movement, and the
torso – by turning the whole body in the direction of move-
ment measured by smartphone sensors placed the back.

re-assessment of the most common implementation and reevalua-
tion of continuous movement in VR, given that users will physically
step on the same place, imitating jogging-in-place, and therefore,
experience additional shaking of the body and the headset. This
leads us to the following research question: “How can we facilitate
jogging-in-place the most efficiently in terms of speed and accuracy
without increasing VR sickness?” To answer this research questions
and investigate the efficiency of the proposed methods in virtual
environments, we conducted a controlled lab experiment in the
virtual reality space.

3.1 Participants
We recruited twelve participants (9 male, 3 female) aged between
20 and 29 (𝑀 = 23.8, 𝑆𝐷 = 2.6). Eight participants had never, or
only once, experienced VR before, two tried VR approximately 2-
5 times and two participants had tried VR more than five times
before. Only one participant had tried a walk-in-place application
before. The participants were recruited through the advertising
channels of our institution and no compensation was provided for
their participation.

3.2 Study design
The study was designed to be within-subject with one independent
variable: body-steering method. The body-steering method consisted
of three levels which included (1) head-, (2) hand-, and (3) torso-
based locomotion methods (Figure 1). All three methods are based
on the work of Tregillus et al. [64] and require participants’ move-
ment in place, i.e., jogging-in-place, to move forward in a virtual
space. The head-based steering facilitates continuous movement
in the direction indicated by a head. We base this method on the
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Figure 2: Participants had to follow a predefined route (bird’s
eye view above), where each route consisted of eight left and
right turns.

previous work and its success for walking [37, 62, 64], driving [54],
and cycling [40]. The speed of movement is controlled by head
movements up and down measured by the accelerometer in a VR
headset. Such movements reflect natural implicit movement while
jogging. The hand-based steering method utilizes hand-directed
steering in which the user points in the desired direction and is
continuously moving in that direction in the presence of physical
jogging-like movement. We based this method on the previous
work, which typically used for controller-based continuous locomo-
tion methods [8, 10, 17, 39]. The speed of movement is controlled
by hand movements up and down and measured by the accelerom-
eter in a smartphone placed in a hand to decouple the movement
from the VR headset and facilitate better exploration of the virtual
environment, similar to jogging in real world when runners hold
their smartphones in hands. The torso-based steering tracks the
direction of the user’s upper body and leave both hands free and
detached from the user’s gaze-direction. We based this method on
the previous work used for walking [8, 69] that indicated advan-
tages of spatial awareness and space orientation [32, 45]. With this
method, we also aimed to replicate a “natural” jogging experience
from the real world. The speed of movement is controlled by torso
movements up and down and measured by the accelerometer in a
smartphone placed behind the belt in the back of user body. Each
body-steering method reflects one experimental condition, i.e., the
participant experienced all three steering methods as three separate
conditions. The order of the steering methods was counterbalanced
using a balanced Latin square. The task assigned to participants
was to follow a predefined curved route (Figure 2 and 3) using each
of the locomotion methods, and to reach the target point as fast as
possible while avoiding collisions with virtual walls in the environ-
ments. The route consisted of eight turns left and eight turns right
and was 52 meters long.

373



MUM ’23, December 03–06, 2023, Vienna, Austria Hedlund et al.

3.3 Apparatus
We used the Samsung GearVR (a wireless headset) to avoid inconve-
niences with wires. The physical experimental area was calibrated
to a size of 1 x 1 (WxL) meters with a carpet underneath, for users
to feel the boundaries with their feet and chaperone bounds turned
on for participant safety. In the head-method, both steering and
step detection is determined by the VR-headset. For the torso- and
hand-methods, we used an external smartphone (Google Nexus
5) as IMD sensor (gyroscope for rotation, accelerometer for step
detection). We used a smartphone as external device for two rea-
sons. First, smartphones are ubiquitous and can easily be used with
headsets that don’t use VR-controllers, e.g., Apple Vision Pro. Sec-
ondly, the smartphone multi-touch screen and other capabilities
could be used as inputs in VR for other contexts than locomotion.
To attach the smartphone for the torso-method, we used a sport
wrist bag. The wrist bag was positioned on the back of the user,
close to the hips, as suggested by Nilsson et al. [45] (Figure 1 c).
The gyroscope data from the external smartphone was sent every
frame over Bluetooth, and step detection on each event trigger.
For the head-based method, the gyroscope and accelerometer data
was accessible from the smartphone in the headset. An application
containing the virtual experimental track was created with Unity.

3.4 Measures
To compare the locomotion methods in VR, we measured the fol-
lowing dependent variables:

• Task Completion Time (in sec): the time necessary to go from
a start to the end point of the predefined route.

• Number of steps: we counted a number of physical steps made
by participants while using the locomotion methods. For this,
we used the algorithmwith a low overhead for step detection
that accounts for consistent frame-rate in VR created by Zhao
et al. [75]. The algorithm takes accelerometer data as input,
which we feed from the smartphone used as VR headset
(head) or external smartphone (torso, hand).

• Number of collisions: we counted the number of collisions
into the walls along the track.

• Virtual Reality Sickness: for each locomotion method, partic-
ipants filled in the questions from the Simulation Sickness
Questionnaire (SSQ) to assess their general state of motion
sickness. To calculate the SSQ score [28], we used the for-
mula from [4].

• Usability: for each locomotion method, participants filled in
the questions from the System Usability Scale (SUS) to assess
their general level of usability.

3.5 Procedure
After obtaining informed consent, we collected demographic data
from the participants. We then provided a brief overview of the
locomotion methods and the participants familiarized themselves
with the three methods in a test task. Once the participants felt
comfortable, we started the experiment, in which they had to go
from a starting to an end point of a predefined route as fast as
possible without colliding with the track walls along the route. At
the end of the study, we interviewed the participants about their
general preferences for the explored body-steering methods, their

Figure 3: The predefined route as seen from inside the VR
headset.

ease of use, and realism. The entire study lasted approximately one
hour per participant.

3.6 Data analysis
We used the one-way ANOVA as an omnibus test, and t-tests for
post-hoc analysis for the parametric data. For non-parametric data,
we use a Friedmann test as an omnibus test, and a Wilcoxon signed-
rank test for post-hoc analysis. We used a Bonferroni correction
for post-hoc analysis.

4 RESULTS
Our results show that participants were faster with hand- and head-
based methods than with a torso-based one. Moreover, they made
more steps with the head-based method than with the other two.
The usability of torso-based method was rated lower than the other
two. Lastly, the number of collisions and virtual reality sickness
was comparable among the methods. We outline these results in
detail in the following subsections.

4.1 Task completion time
We discovered that participants finished the track faster with head-
(𝑀 = 22.6𝑠𝑒𝑐, 𝑆𝐷 = 7.9) and hand-based (𝑀 = 24.2𝑠𝑒𝑐, 𝑆𝐷 = 4.6)
methods than with a torso-based (𝑀 = 29.6𝑠𝑒𝑐, 𝑆𝐷 = 9.6). This
finding was shown to be statistically significant as indicated by
a Friedmann test (𝜒2 (2) = 3.2, 𝑝 < 0.05, 𝜂2 = 0.13). The post-
hoc analysis has shown that participants were slower with the
torso-based method than with hand- (𝑝 = 0.026) and head-based
(𝑝 = 0.01) ones. However, there was no statistically significant
differences between the hand- and head-based methods (𝑝 > 0.05).

4.2 Number of steps
We found that participants made more steps using the head-based
method (𝑀 = 93.1, 𝑆𝐷 = 12), followed by hand- (𝑀 = 62.6𝑠𝑒𝑐, 𝑆𝐷 =

7.6) and torso-based (𝑀 = 62.6, 𝑆𝐷 = 8.8) methods. This finding was
shown to be statistically significant as indicated by a Friedmann
test (𝜒2 (2) = 18.7, 𝑝 < 0.001, 𝜂2 = 0.78). The post-hoc analysis
has shown that participants made more steps with the head-based
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Figure 4: Overview of results: means and standard errors for the task completion time, number of steps, and number of
collisions.

method than with hand- (𝑝 < 0.001) and torso-based (𝑝 < 0.001)
ones. However, there was no statistically significant differences
between the hand- and torso-based methods (𝑝 > 0.05).

4.3 Number of collisions
The number of collisions with the track walls was shown to be
comparable among the three methods: head- (𝑀 = 4.5, 𝑆𝐷 = 3),
hand- (𝑀 = 4.8, 𝑆𝐷 = 2.3), and torso-based (𝑀 = 4.3, 𝑆𝐷 = 2). This
finding was shown to be statistically non-significant as indicated
by one-way ANOVA (𝐹 (2, 33) = 0.12, 𝑝 > 0.05).

4.4 Virtual Reality Sickness
We found that all methods induce comparable level of virtual reality
sickness based on the total SSQ score: head-(𝑀 = 23.3, 𝑆𝐷 = 22.3),
hand-(𝑀 = 25.2, 𝑆𝐷 = 22.5), and torso-based (𝑀 = 28.9, 𝑆𝐷 =

24). This finding was shown to be statistically non-significant as
indicated by a Friedmann test (𝜒2 (2) = 0.97, 𝑝 > 0.05). Furthermore,
we did not observe statistically significant differences between
methods for each subcategory of questionnaire using a Friedmann
test: nausea (𝜒2 (2) = 1.6, 𝑝 > 0.05), disorientation (𝜒2 (2) = 2, 𝑝 >

0.05), and oculomotor (𝜒2 (2) = 1.58, 𝑝 > 0.05).

4.5 Usability
We found the head-(𝑀 = 83.3, 𝑆𝐷 = 12.5) and hand-based (𝑀 =

83.3, 𝑆𝐷 = 13.6) methods had higher usability score than the torso-
based (𝑀 = 73.3, 𝑆𝐷 = 21) one. This finding was shown to be
statistically significant as indicated by a Friedmann test (𝜒2 (2) =
1.76, 𝑝 < 0.05, 𝜂2 = 0.07). The post-hoc analysis has shown that
the usability of the hand-based method was higher than torso-
based (𝑝 = 0.048). However, there was no statistically significant
differences between the head- and torso-based methods (𝑝 > 0.05)
and between the head- and hand-based method (𝑝 > 0.05).

4.6 Qualitative Feedback
Participants preferred the hand-steering method the most (N = 6),
followed by torso- (N = 3) and head-based (N = 3) ones. Regarding
realism, participants found the head-steering method (N = 6) the

most realistic, followed by torso- (N = 5) and hand-based (N = 1).
However, participants found the head-steering method the easiest
to use (N =8), followed by the hand-(N = 4) and torso-based (N =
0) ones. Participants reported that the head-based method was the
easiest to use, but it also created nausea and lockiness. As some of
them mentioned: “bobbing my head made me feel nauseous”, “It is
easier to just nod your head instead of jogging”, “it was less ‘Gizmos’ to
think about”. Participants reported that the torso-steering method
was the most difficult to learn but felt more realistic. As some noted:
“Back takes a few seconds longer to learn than just the head but is
preferred since it’s more realistic. It was nice to run one way and look
the other. I tried it in the end in the open field.”, “No real need to look
around since it was not that much to see, but I would have benefited
from it more in a game like Amnesia (First-person horror game)”, “I
liked back the most, it’s best for games like shoot’em ups (sub-genre
of shooting games)” Finally, another participant mentioned that the
torso-steering method can complement head- and hand-based ones:
“The head and hand methods are probably best used to complement the
torso-steering method. The back method would be great if the delay
were smaller”. As for the hand method, participants mentioned that
it easy to use and was intuitive. As one participant mentioned: “The
Hand-method can be the easiest because it’s user friendly”.

5 DISCUSSION AND FUTUREWORK
5.1 Torso-steering takes longer and

head-steering leads to a higher step count
To our surprise, the torso-based method was slower than using
a hand or a head since we expected that turning around corners
should be easier when the locomotion direction is detached from the
viewing direction [58, 59]. As some participants commented, one
potential explanation could be that many of them did not use their
entire body while using the head- and hand-based methods. Thus,
they did not jog in place as they would normally do when using
a walk-in-place method. Instead, many stood still to trigger the
step detection and only moved their head or hands. Using smaller
motions could have made it easier to keep up the speed, since the
step detection algorithm outputs a higher speed if the time intervals
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Figure 5: Overview of results: means and standard errors for the SUS and SSQ scores.

between steps are smaller. The torso-based method required the
participants to move their body for step detection, thus making it
more cumbersome and slow compared to the “cheating” possibility
afforded by the other methods. A second explanation could be
that the torso-based method was more difficult to learn, as shown
by the participants’ preferences in the after-study questionnaire
since none thought that the torso-based method was easiest to
learn. Instead, eight participants found the Head-based method
the easiest to learn. Similar findings have also been reported that
non-head-directed steering can increase cognitive load, making
such a method more difficult to learn [8]. Since we did not find
statistically significant differences in the completion time between
the hand- and head-based methods, we believe that it has more to
do with the combination of torso-steering and full-body movement
than detaching steering and step detection from the head.

Figure 6: Difference in travel path: (a) head-based and (b)
detached (hand & torso) body-steering methods. The blue
triangle represents field-of-view, the red arrow represents
walking direction.

As for the number of steps, participants made more steps using
the head-based method. Participants found it easier to trigger steps
with the head-based method since it does not require full body
movement and needs the user to move their head up and down
slightly. This could have led to steps being triggered more quickly
and easily, thus leading to better maneuverability. At the same

time, it could also have led to unintended step detection. However,
based on the participants’ comments and observations made during
the experiment, the hand-based method resembled the head-based
method in how easily step detection was triggered, i.e., it was easy
for users to trigger steps by moving their hand slightly up and
down. If unnecessary step-triggering is the only explanation for
more steps, the head- and hand-based methods would show similar
results regarding the number of steps. Therefore, it seems likely
that torso-directed and hand-directed steering gave participants
an advantage for moving in relation to another object (the track
walls in our experiment) [7]. For instance, participants could better
optimize their path around obstacles (a wall in our experiment)
by focusing their gaze on the wall ending while moving forward
simultaneously. We illustrate this explanation of navigational path
difference in Figure 6. Additionally, exploring a combination of the
proposed methods might be interesting future work. For example,
head-directed steering in combination with a hand control can
provide a good control over locomotion speed, as was previously
shown for walking [52].

5.2 Head-steering is the most realistic and
easiest to use

Our results indicate that participants preferred the hand-steering
method as much as head-steering, but the head-steering method
was the most realistic and easiest to use. This is surprising since
head-directed steering is less similar to normal walking compared
to the other methods [61]. However, it is in line with previous
work of head-based steering for cycling that showed a high us-
ability [40]. Our observation during the experiment revealed that
many participants moved their head or hand for step detection
despite full-body walk-in-place movement being more akin to nor-
mal walking. This tendency towards minimizing movement can
also be observed within other application areas and platforms. For
instance, the Nintendo Wii was introduced to increase movement
and more bodily engaging games, but many users learn to play the
games sitting on their couch with minimal movements instead [20].
Perhaps this is a general human evolutionary tendency in which

376



Jogging-in-Place: Exploring Body-Steering Methods for Jogging in Virtual Environments MUM ’23, December 03–06, 2023, Vienna, Austria

we strive to perform tasks in as energy-efficient manners as pos-
sible [47]. As for the virtual reality sickness, although we did not
observe a statistically significant difference in SSQ scores, two par-
ticipants said that they got dizzy and nauseous from too much head
movement, which is in line with previous work [50]. Individual
differences could have affected the results since the sample size was
limited. Also, each participant only spends roughly a minute in the
VE per method. Longer exposure time may have given a different
outcome. Additionally, we observed that many participants did not
jog or even walk in place. Instead, they only moved their hand or
head enough to trigger the step detection, which implies that par-
ticipants should have picked the torso method to be more realistic
than the head method since it required more movement akin to
real jogging. Since head-based steering was experienced as more
realistic compared to torso-directed steering, other factors than the
steering method affected participants’ perception of realism. Since
most participants did not think the torso method was the easiest to
use, the simplicity of the other methods likely impacted perceived
realism.

6 LIMITATIONS
The investigated body-steering methods for jogging in virtual real-
ity have several limitations. For instance, neither supports strafing,
i.e., jogging sideways or backward. These are commonmaneuvering
capabilities in many first-person games [36, 45], and a logical expan-
sion for future implementation is to incorporate these capabilities,
for example, by extending them to the gaze-based methods [19].
Users typically use their eye gaze when navigating [18], which
could be used to slightly rotate the rendered screen image instead
of slightly rotating the head. Detaching step detection from the
head would also be necessary to minimize the HMD from bumping.

We have also experienced drifting problems using the proposed
methods. Thus, a more stable gyroscope may be necessary in future
implementations. The new GearVR controller [23] has a better
gyroscope sampling rate than the Nexus 5 [38] and can be used.
Additionally, we only explored the maneuverability of the proposed
methods on one jogging task, and more different task scenarios
should be evaluated in future work, such as information gathering
and free exploration. Our work is exploratory, and we tested with
only twelve participants, and a bigger sample size is necessary in
future studies. While the frame rate of smartphone-based VR can
induce VR sickness [48], longer experiment durations can also be
tested in future studies. However, our results provide an initial
understanding of how physical body movement, head, hands, and
torso, can influence the jogging experience in virtual environments.

7 CONCLUSION
In this paper, we explored three body-steering methods for jogging-
in-place in virtual environments. To investigate the performance of
the proposed body-steering methods, we conducted a controlled lab
experiment to assess speed, accuracy, and VR sickness. We found
that participants were faster with hand- and head-based methods
than with a torso-based one, which might be explained by the
increased demand for a new form of head and torso coordination
and a need for more practice to master. Moreover, they took more
steps with the torso-based method than the other two. The usability

of the torso-based method was rated lower than the other two.
Lastly, the number of collisions and virtual reality sickness was
comparable among the methods.
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