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ABSTRACT
The current level of road safety for cyclists is estimated mainly
based on police reports and self-reports collected during surveys.
However, the former focuses on post-accident situations, while the
latter is based on subjective perception and focuses only on road
sections. This work builds the foundation to automatically assess
perceived cyclists’ safety by analyzing their head movements. In an
indoor experiment (N = 12) using a Virtual Reality bicycle simulator,
we discovered that perceived safety correlates with head rotation
frequency and duration but not with head rotation angles. Based
on this, we implemented a novel and minimalistic approach to
detect head movements based on sensor data from Apple AirPods
and an iPhone and conducted an outdoor experiment (N = 8). Our
results indicate that perceived safety correlates with head rotation
frequency and duration only at uncontrolled intersections when
turning left and does not necessarily apply to all situations.

CCS CONCEPTS
•Human-centered computing→ Virtual reality;User studies;
Empirical studies in HCI.
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1 INTRODUCTION
Cycling safety is typically reflected in accident reports provided by
the police. This implies that assessing dangerous road situations
happens post-factum, i.e., after an accident has happened and a
person has been injured. Cyclists’ subjective perceived safety can
differ from objective safety measures used for urban street design,
defined as “individual’s experience of the risk of becoming a vic-
tim of crime and disturbance of public order” [17]. To overcome
this limitation of assessing cyclists’ behavior on the go, we aim to
quantify cyclists’ safety before accidents happen by measuring and
understanding their state.

Researchers have previously augmented bicycles and cyclists
with additional sensors to quantify ride quality and estimate cy-
clists’ proximity to other road users for safety reasons. They have
employed eye-tracking to assess cyclists’ attention and gaze behav-
ior [25, 43], and smartphones to record rides [19]. More recent work
quantified cyclists’ peripheral awareness based on the brain’s al-
pha waves to facilitate integration between cyclists and bicycles to
increase safety [1, 45]. In contrast to the rather complex hardware
required in these projects, we use common, off-the-shelf hardware.
The broader availability of earables [20], i.e., in-ear headphones
equipped with motion sensors, enable us to quantify head move-
ments on a larger scale. The ear, in general, is an optimal spot to
measure head movement as it is centered at the sides of the human
head [9]. Although head movements typically indicate a shift in
the users’ attention, it still needs to be explored in the context of
cycling and perceived safety. Therefore, this paper explores an ad-
ditional way of quantifying perceived cyclists’ safety based on head
movements using data provided by built-in sensors from off-the-
shelf earables and smartphones. We expect this data to contribute
to crowdsourced bike-safety maps [19] and bike routing.

In this paper, we investigate the quantification of perceived cy-
clists’ safety via head movements in Virtual Reality and outdoors.
From the first experiment, in which participants cycled through
four dangerous scenarios in a Virtual Reality bike simulator, we dis-
covered that head rotation frequency and duration and not rotation
angles reflect perceived cyclists’ safety. To confirm this observation
for the same scenarios outdoors, we developed and implemented a
novel approach based on Apple AirPods worn by cyclists and an
iPhone mounted on a bicycle to measure head movements relative
to the body. The combination of these sensors provides a full picture
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of head movements given the static spatial relationship between
bicycle and cyclist that form a single locomotion unit. Our results
confirmed the findings from the indoor experiment that perceived
safety correlates with head rotation frequency and duration but
only at uncontrolled intersections when turning left.

Our main research contributions include the following:
• A novel and minimalistic approach to measure head move-
ments via sensors from AirPods and an iPhone.

• An empirical evaluation of the proposed approach for assess-
ing perceived cyclists’ safety in Virtual Reality and outdoors.

2 RELATEDWORK
This section outlines previous work focused on quantifying cy-
clists’ movement, activity recognition via head movements, and
evaluation environments for cyclists’ behavior.

2.1 Quantifying Cyclists’ Behavior
Cyclists’ movement is important in understanding their decision-
making process and identifying distractions in traffic. The gath-
ered insights can suggest urban design improvements or develop
new assistant systems, given that most of existing cyclists’ assist-
ing systems provide an output, such as warnings [26, 35, 46, 50],
navigation cues [6, 15, 21, 28, 39, 49], and behavior recommenda-
tions [18, 27, 29], rather than input. The observable input data is
vast, including eye and head movement, heart rate [51], and neural
activity [1]. For example, Mantuano et al. [25] analyzed cyclists’
gaze behavior and showed that intersections and crosswalks are
less observed in the presence of pedestrians, and underlined the ne-
cessity of visual and physical separation for vulnerable road users.
Eye and head movements are closely related and indicate visual
attention [9]. For example, Rupi and Krizek [43] concentrated on
the difference between experienced and inexperienced cyclists and
found longer fixation times for experienced cyclists. The shorter fix-
ation times of inexperienced cyclists signify active search strategies
and a possible distraction from surrounding traffic. In this paper, we
investigate head movements as an indicator of cyclists’ perceived
safety, since this correlation remains underexplored.

With the rise of the smartphone, new approaches leverage data
from built-in sensors, such as accelerometers and gyroscopes, to as-
sess road situations [41] and cyclists’ behavior. For instance, Mohan
et al. [37] used the accelerometer, microphone, and GPS to track
the road and traffic conditions, e.g., honking and potholes. As for
the cyclists’ behavior, a project called BikeSafe [11] has shown that
smartphones can effectively detect cyclists’ dangerous behavior
and prevent traffic accidents. Kawsar et al. [20] presented the open
eSense earable platform1 and its wide range of applications, such as
understanding riders’ behavior and contextual notifications. Ferlini
et al. [9] have further investigated the eSense accuracy with its 6
degrees of freedom setup consisting of an accelerometer and gyro-
scope to track the head rotations of participants while standing. The
tracking was accurate to a single-digit degree, even while chewing
or talking as noise factors. Using earbuds, Ma et al. [24] found a
way to detect steps, human activities, and face-tapping gestures
through sound frequencies gathered via an inward-facing micro-
phone. More recently, Karakaya et al. [19] developed the SimRa
1https://www.esense.io last access: 2023-03-14

platform to record incidents and route data with a crowdsourcing
approach.Their goal was better to understand cyclists’ behavior and
critical spots in cities to improve their perceived safety. They uti-
lized the smartphone sensors to collect the GPS, accelerometer, and
gyroscope data to automatically detect incidents, like near misses,
where cyclists had to swerve quickly and map the cycled route.
With this approach, they could gather an extensive database and
detect problematic spots in Berlin. However, their approach focuses
on the sensor data from the smartphone placed on a bicycle and
the detection of situations caused by a sudden movement of the
cyclist, e.g., swerving to the side or braking. It enables the detection
of close passes or narrow misses, leaving recognition of motion for
body parts out of the scope. In our work, we build on the idea of
using a smartphone sensor data extended with the Apple AirPods
32 sensors to understand head movements and perceived safety.

2.2 Activity Recognition via Head Movements
One prominent way to study human activity involves understand-
ing head motion patterns [8, 48]. From the recognition perspec-
tive, previous work primarily focused on the classification perfor-
mance provided by machine and deep learning algorithms [13, 47]
and proposed and improved existing computational models [8, 44].
From the human motion understanding, previous work explored
the device technology [42], its placement [2], computational algo-
rithms [54], inertial time series feature selection [54], and body
rehabilitation [40]. As for exploring head movements of cyclists
and motorcyclists, researchers focused on augmenting helmets with
Inertial Measurement Units (IMUs) to detect head movements and
improve the recognition rate [3, 14, 16] to send rescue requests and
prevent accidents [4], leaving the understanding of riders’ perceived
safety out of the scope. For example, system families like Garmin or
Apple aim to enhance the feeling of safety with accident detection
systems3 that inform emergency contacts or the local ambulance
in case of critical events based on sensor data, e.g., spikes in the ac-
celerometer data. However, they send notifications after accidents
have already happened. Wong et al. [53] explored head motion
recognition using a smart helmet for motorcyclists and introduced
a methodology based on feature extraction from the IMU signal
data to recognize four head motion patterns: looking up/down and
turning left/right. However, the focus of their work lies on the high
recognition of head movements rather than understanding what
these head movements imply. Our work also analyzes the sensor
data from IMUs integrated into an iPhone and AirPods 3. Still, we
focus on understanding cyclists’ head movements under exposure
to dangerous traffic situations with a focus on perceived safety.

2.3 Evaluating Cyclists’ Behavior
Two main approaches to evaluating cyclists’ behavior are (1) simu-
lated and (2) real-world naturalistic environments. The former typ-
ically involves a bicycle fixed on a platform in front of screens [22,
30] or using Virtual Reality glasses [36, 52] for the visual impression.
The latter requires instrumented bicycles with additional hardware
for outdoor environments. However, both of them fall under the

2https://www.apple.com/airpods, last access: 2023-01-15
3https://support.apple.com/en-us/HT213225
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Figure 1: VR study overview: (a) The VR bicycle simulator
consists of a bicycle on a fixed platform equipped with two
VR trackers, speed- and brake sensors, a turntable, and a VR
headset. (b) The route cyclists followed in the experiment.
(c) Navigation indicators and road markings.

safety-realism trade-off [35], such that cycling on a bicycle simula-
tor is safe but might be less realistic as in traffic and cycling in traffic
is realistic but is not always safe. Although previous work explored
methods to increase realism and safety in bicycle simulators [12, 38]
and introduced AR- [34, 35] and tandem-based simulators [32, 33],
the question of balancing cycling reality and safety is still open.
To better understand the influence of both approaches on cyclists’
head movements and perceived safety, we started by exposing
participants to dangerous situations in the VR bicycle simulator.
Afterward, we explored cyclists’ behavior in the same scenarios
outdoors and measured their head movements using our proposed
approach based on an iPhone and AirPods. This comparison be-
tween lab and outdoor conditions allowed us to understand better
the effects of both environments on cyclists’ behavior.

3 STUDY 1: CYCLING IN VIRTUAL REALITY
We conducted a lab experiment in the Virtual Reality (VR) bicycle
simulator under safe and immersive conditions to quantify cyclists’
perceived safety via head movements. The research question for
this experiment is: “How do cyclists’ head movements reflect their
perceived safety while cycling in Virtual Reality?”

3.1 Participants and Study Design
We recruited 12 participants (six female, six male) aged between
21 and 31 years (𝑀 = 24.67 years, 𝑆𝐷 = 2.74 years) using social
networks and personal contacts. Three participants cycle daily, four
once a week, three once a month, and two at least once a year. Half
of them have previously experienced cycling in a bicycle simulator,
and all use VR devices at least once a year. Participants did not
receive any compensation for their participation.

For this study, participants cycled one route in a VR bicycle
simulator that included four of the most dangerous situations based
on previous work [31] and statistical reports [5, 10, 23]. These
situations were: (1) a left turn at a traffic light-protected intersection,
(2) a situation with road obstacles, e.g., a parked car on a shared
bus & bike lane, (3) a situation in which a cyclist has to change
her position within a lane (or even change lanes), which requires
turning back to check the traffic behind, and (4) a cyclist is turning
left at an uncontrolled intersection (Figure 3). All of these situations
are described for right-hand traffic. These situations were repeated
three times in a pre-defined order, and all participants experienced

the same situation order during a ride. These parts of the route
covered twelve (3 x 4) situations that we took for our analysis. Other
17 situations were mixed within the route and did not represent
any of the above scenarios (Figure 1b). The route was 2.45 km long.

3.2 Apparatus
We conducted the experiment in a VR bicycle simulator, which con-
sisted of a bicycle (28-inch) placed on a Tacx Satori Smart Trainer4

with a 1.6 kg flywheel. The front wheel was placed on a turntable to
facilitate the rotation of the handlebar in a static position. Cycling
actions, such as steering, pedaling, and braking, were reflected
in the simulation shown in a VR head-mounted display (Valve
Index). The VR environment was implemented using Unity SDK
(2020.1.12f1) and SteamVR assets and consisted of a virtual city in a
flat landscape. The bicycle was fitted with a Garmin Speed Sensor
2 that transmits real-time speed via ANT+ and a brake sensor that
consisted of an ESP-WROOM-32 and a TTP223 capacitive touch
sensor on the rear wheel connected via USB (Figure 1a).

The cycling simulation contained traffic lights and car flows,
simulated by an existing Traffic Simulation project that enables easy
traffic simulation in a scene5. We adjusted this asset to account for a
cyclist in the traffic flow, e.g., a car will stop if a cyclist has a right to
turn first. To facilitate an adequate performance of the simulation
environment, we spawned the cars based on the triggers placed
in the environment to facilitate the traffic flow at the locations
near the cyclist. Similarly, the cars were despawned when a cyclist
reached a despawning trigger placed in the environment or when
a car was out of cyclists’ viewing angle.

The cars followed traffic rules, such as red/green traffic lights,
stayed within the street layout, and kept a safe distance from other
cars in front of them.

Additionally, the simulation contained green arrows placed in the
environment to navigate a cyclist throughout the city (Figure 1c).

3.3 Measurements
To quantify cyclists’ perceived safety via head movements, we
measured the following dependent variables:

• Head rotation angle: we measured head rotation azimuth
angles with a Virtual Reality HMD. 0° is the nose with the
deadband range from -20° to +20° (Figure 2) to filter out
smaller head rotations possibly caused by body movements
during cycling. The value of 20° was based on pilot testing
before the experiment. We did not use any other filters.

• Head rotation frequency: we counted the number of head
rotations left and right larger than 20° (Figure 2).

• Head rotation duration: we calculated the duration of head
rotations left and right using a Virtual Reality HMD, i.e., a
time between a head leaving the 20° threshold and coming
back to it (Figure 2).

• Total duration at situations: we measured the partici-
pant’s total time in each situation. For this, we added bound-
ary boxes around each situation. The timer started when a
bicycle’s front wheel entered the boundary box and stopped
when the rear wheel left it.

4https://www.garmin.com/en-US/p/690891
5https://github.com/mchrbn/unity-traffic-simulation
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Figure 2: We counted rotations outside the threshold of 20° to
left or right as a head rotation. The threshold of 20° was se-
lected to filter out small head movements, possibly unrelated
to traffic situations. The reported angle for the registered
rotation is the highest/lowest value in the range. Due to the
drifting of the sensor data outdoors, we calculated the mean
rotation for every minute and used this as a neutral value.

• Total duration standing at situations: we measured the
total time participants spent standing at each situation, i.e.,
when the velocity was zero, as an indicator of the amount of
time necessary to make a decision.

• Perceived safety: participants rated how safe they felt in
each situation using a 5-point Likert scale (1 – very unsafe,
5 – very safe) per category of situations, i.e., four times.

3.4 Procedure
After obtaining informed consent, we collected participants’ demo-
graphic data and explained the experiment’s goal. Their task was to
cycle through the virtual city by following the navigation arrows
placed in the environment (Figure 1 c), and follow the traffic rules.
At the end of the study, we interviewed the participants about their
perception of safety and the difficulty by showing them the four
experienced scenarios and by asking them to justify their perceived
safety score. The entire study took approximately 30 minutes.

3.5 Data analysis
In both experiments, we used a one-way ANOVA and t-tests for
post-hoc analysis of the parametric data since all assumptions for
the parametric data analysis were met. We applied a Friedmann
test and a Wilcoxon signed-rank test for non-parametric data. For
multiple comparisons analysis, we used a Bonferroni correction. For
the correlations, we used Spearman’s rank correlation coefficient.

3.6 Quantitative results
The summary of results is shown in Table 1 and Figure 4.

3.6.1 Head rotation angle. Cyclists had the largest head rotation an-
gles to the left for situationswith obstructed lanes (𝑀𝑑 = 124°, 𝐼𝑄𝑅 =

56°), followed by intersections with pockets (𝑀𝑑 = 63°, 𝐼𝑄𝑅 = 32°),
turning left at uncontrolled intersections (𝑀𝑑 = 50°, 𝐼𝑄𝑅 = 33°), and
lane changing (𝑀𝑑 = 47°, 𝐼𝑄𝑅 = 23°). This difference is statistically
significant, as shown by a Friedman test (𝜒2 (3) = 8.3, 𝑝 < 0.05,
𝜂2 = 0.34). The post-hoc analysis shows that situations with ob-
structed lanes are statistically significantly different compared to

Table 1: The VR study results: median head rotation angles,
frequencies, duration left and right, total time spent at situa-
tions and time spent standing, and perceived safety. Angle =
Head rotation angle, Freq. = Head rotation frequency, Dur. =
Head rotation duration, Stand. = Time spent standing, Total
= Total time spent at situations, S = safety.

Scenario Angle Freq. Dur. Time S
L R L R L R Stand. Total

A: Left turn at intersec-
tions with pockets

63° 38° 3 1 3 1 12 25 4

B: Obstructed lane 124° 24° 1 0 0.5 0 1 8 4
C: Lane change for turn-
ing left

47° 35° 2 1 1 1 9 21 3

D: Left turn at uncon-
trolled intersections

50° 41° 3 2 1 1 6 15 2

the other three situations (𝑝 < 0.05). The remaining pairwise com-
parisons do not reveal statistically significant differences (𝑝 > 0.05).
In contrast, cyclists had similar head rotation angles to the right
across all scenarios: obstructed lanes (𝑀𝑑 = 24°, 𝐼𝑄𝑅 = 31°), in-
tersections with pockets (𝑀𝑑 = 38°, 𝐼𝑄𝑅 = 17°), lane changing
(𝑀𝑑 = 35°, 𝐼𝑄𝑅 = 13°), and turning left at uncontrolled intersec-
tions (𝑀𝑑 = 41°, 𝐼𝑄𝑅 = 8°). Thus, a Friedman test did not indicate a
statistically significant difference (𝜒2 (3) = 3, 𝑝 > 0.05, 𝜂2 = 0.17).

3.6.2 Head rotation frequency. Cyclists turn their heads left less
frequently when overtaking obstacles on obstructed lanes (𝑀𝑑 =

0.5, 𝐼𝑄𝑅 = 1) than when turning left at intersections with pockets
(𝑀𝑑 = 3, 𝐼𝑄𝑅 = 1.3), uncontrolled intersections (𝑀𝑑 = 2.8, 𝐼𝑄𝑅 =

3.4), or changing a lane (𝑀𝑑 = 2, 𝐼𝑄𝑅 = 2.75). This finding is con-
firmed by a statistically significant difference using a Friedman test
(𝜒2 (3) = 18.6, 𝑝 < 0.001, 𝜂2 = 0.52). The post-hoc analysis reveals
a significant difference between the situation with obstructed lanes
and the remaining situations (𝑝 < 0.05). For rotation frequency
to the right side, cyclists have fewer rotations when going around
obstacles (𝑀𝑑 = 0.3, 𝐼𝑄𝑅 = 0.5) compared to turning left at inter-
sections with pockets (𝑀𝑑 = 1.2, 𝐼𝑄𝑅 = 1.1), uncontrolled intersec-
tions (𝑀𝑑 = 1.6, 𝐼𝑄𝑅 = 3.6), or changing a lane (𝑀𝑑 = 1.2, 𝐼𝑄𝑅 =

1.3). This finding is confirmed by a statistically significant differ-
ence using a Friedman test (𝜒2 (3) = 8.8, 𝑝 = 0.032, 𝜂2 = 0.24) and
the post-hoc analysis between the situation with obstructed lanes
and the remaining situations (𝑝 < 0.01). The remaining pairwise
comparisons for left and right head rotation frequencies do not
reveal any statistically significant difference (𝑝 > 0.05).

3.6.3 Head rotation duration. Head rotations left were, on average,
longer at intersections with pockets (𝑀𝑑 = 3.25 sec, 𝐼𝑄𝑅 = 2.4),
followed by lane changing (𝑀𝑑 = 1.3 sec, 𝐼𝑄𝑅 = 0.5), uncon-
trolled intersections (𝑀𝑑 = 1.3 sec, 𝐼𝑄𝑅 = 0.5), and obstructed
lanes (𝑀𝑑 = 0.5 sec, 𝐼𝑄𝑅 = 1.1). This finding is confirmed by a
statistically significant difference using a Friedman test (𝜒2 (3) =
24.1, 𝑝 < 0.001, 𝜂2 = 0.67). The post-hoc analysis reveals a signifi-
cant difference between all the situations (𝑝 < 0.001), except lane
changing and uncontrolled intersections (𝑝 > 0.05). Head rotation
duration to the right is comparable among intersections with pock-
ets (𝑀 = 0.97 sec, 𝑆𝐷 = 0.75), obstructed lanes (𝑀 = 0.42 sec, 𝑆𝐷 =
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A B C D

Figure 3: Four scenarios shown in VR (upper row) and out-
doors (lower row): (a) Left turn at intersections with pockets,
(b) Obstructed bicycle lanes, (c) Lane Change for Turning
Left, and (d) Left turn at uncontrolled intersections.

0.41), lane changing (𝑀 = 0.62 sec, 𝑆𝐷 = 0.41), and uncontrolled in-
tersection (𝑀 = 0.78 sec, 𝑆𝐷 = 0.62). A one-way ANOVA test does
not reveal statistical differences among the situations (𝑝 > 0.05).

3.6.4 Total duration at situations. Cyclists spent the least amount
of time at the situation with obstructed bicycle lanes (𝑀𝑑 = 8 sec,
𝐼𝑄𝑅 = 4), followed by a left turn at uncontrolled intersections
(𝑀𝑑 = 15 sec, 𝐼𝑄𝑅 = 16), lane changing (𝑀𝑑 = 21 sec, 𝐼𝑄𝑅 = 13),
and left turn at intersections with pockets (𝑀𝑑 = 25 sec, 𝐼𝑄𝑅 =

10). Using a Friedman test, we discovered that this difference is
statistically significant (𝜒2 (3) = 24, 𝑝 < 0.001, 𝜂2 = 0.68) and the
post-hoc analysis shows differences for all pairs (𝑝 < 0.05).

3.6.5 Total duration standing at situations. Participants spent less
time making decisions on obstructed bicycle lanes (𝑀𝑑 = 1 sec,
𝐼𝑄𝑅 = 1.8), followed by a left turn at uncontrolled intersections
(𝑀𝑑 = 6 sec, 𝐼𝑄𝑅 = 17), lane change (𝑀𝑑 = 8.7 sec, 𝐼𝑄𝑅 = 11), and
left turn at intersections with pockets (𝑀𝑑 = 12 sec, 𝐼𝑄𝑅 = 9). We
discovered that this difference is statistically significant using a
Friedman test (𝜒2 (3) = 18.4, 𝑝 < 0.001, 𝜂2 = 0.51). The post-hoc
analysis shows that cyclists waited the shortest amount of time
on obstructed bicycle lanes compared to all situations (𝑝 < 0.001).
Moreover, cyclists waited longer at intersections with pockets than
at uncontrolled intersections (𝑝 = 0.015). The remaining pairwise
comparisons are not statistically significant (𝑝 > 0.05).

3.6.6 Perceived safety. Turning left at intersections with pockets
(𝑀𝑑 = 4, 𝐼𝑄𝑅 = 2) and situations with obstructed lanes (𝑀𝑑 =

4, 𝐼𝑄𝑅 = 2) feels safer than lane changing for turning left (𝑀𝑑 =

3, 𝐼𝑄𝑅 = 2) and turning left at uncontrolled intersections (𝑀𝑑 =

2, 𝐼𝑄𝑅 = 1.5). However, this difference is not statistically significant,
as shown by a Friedman test (𝜒2 (3) = 7.5, 𝑝 = 0.058, 𝜂2 = 0.2).

3.6.7 Correlations. Using Spearman’s rank correlation coefficient,
we analyzed the perceived safety over all situations together and
separately. Summarized over all situations, we discovered a statis-
tically significant correlation between perceived safety and head
rotation frequencies left (𝑟𝑠 = −0.43, 𝑝 < 0.01) and right (𝑟𝑠 =

−0.31, 𝑝 < 0.05). Moreover, we observed a statistically significant
correlation between the perceived safety and head rotation duration
left (𝑟𝑠 = −0.34, 𝑝 < 0.05) and right (𝑟𝑠 = −0.37, 𝑝 < 0.01). However,
the correlation is not statistically significant between perceived
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Figure 4: Correlations in VR (over all situations) between
perceived safety and head rotation frequencies and duration.

safety and head rotation angles left (𝑟𝑠 = −0.12, 𝑝 > 0.05) and right
(𝑟𝑠 = −0.12, 𝑝 > 0.05). Lastly, the correlation is statistically sig-
nificant between perceived safety and total duration at situations
(𝑟𝑠 = −0.35, 𝑝 < 0.05) and total duration standing at situations
(𝑟𝑠 = −0.4, 𝑝 < 0.01). As for each situation, there is a statistically
significant correlation between perceived safety and head rotation
frequency to the left for situations with obstructed lanes (𝑟𝑠 =

−0.57, 𝑝 = 0.049) and lane changing (𝑟𝑠 = −0.57, 𝑝 = 0.049). For the
lane-changing situation, a statistically significant correlation exists
between perceived safety and total time (𝑟𝑠 = −0.58, 𝑝 = 0.044)
and time standing in the situation (𝑟𝑠 = −0.58, 𝑝 = 0.044). The
remaining correlations are not statistically significant (𝑝 > 0.05).

3.7 Qualitative results
3.7.1 Scenario A: Left turn at intersections with pockets. For this
traffic scenario, participants reported difficulties understanding
the traffic flow from the right, recognizing hazardous situations,
and acting safely. Additionally, they mentioned that getting an
overview of the whole intersection was problematic, and they had
to look around for some time to assess the situation. However, it
was easy to enter the pocket, and they had traffic lights to help
make a crossing decision. For example, participants mentioned that:
“getting an overview of the traffic in this situation was difficult” [P7],
“it was challenging to keep the whole intersection in sight” [P8], and
“It was overwhelming because I had to observe traffic flows twice:
when entering and when leaving the pocket.”[P11]. Regarding the
safety concerns, participants noted that it was difficult to estimate
a moment to make a decision, crossing an orthogonal traffic flow
was scary, and a concern not to be seen by others. For instance,
they mentioned: “Because there were so many impressions and I did
not quite know when I could go.” [P12], “I had to move in front of the
orthogonal traffic, which can be scary, especially on big streets.”[P6],
and “I had the feeling to be overlooked very easily.” [P9].

3.7.2 Scenario B: Obstructed bicycle lane. This traffic scenario was
very familiar to participants from real-world situations, and they
had to do a shoulder look before overtaking a parked car on the
bicycle lane. However, they reported that they lacked awareness
of the situation, had to slow down before looking over a shoulder
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and keep a distance from a car in case somebody opened a door.
For example, participants mentioned that “Only by looking over my
shoulder was it clear whether I could change to the traffic lane.” [P2],
“I would drive rather slowly in this situation to have enough time to
do multiple safety looks over the shoulder to be sure to not collide
with any cars approaching from behind.” [P6], and “I remember that
a door of the stationary vehicle can also open.” [P9].

3.7.3 Scenario C: Lane change for turning left. For this traffic sce-
nario, participants expressed concerns about changing to the left-
most lane ahead of time, cars approaching from behind, and the
need for constant head movements to look around. Time coordina-
tion for lane changing was problematic since failing it leads to a
decreased feeling of safety. Some participants noted: “Hard to see
the lane, I have to decide to cross very early, especially if there are a
lot of cars on the road” [P1], “Cars from behind make me feel unsafe,
especially when driving into their path and crossing their lane” [P4],
and “[it was] a bit difficult because I had to switch to the car lane
instead of staying in the bike lane. You must pay attention to the cars
behind, beside, and in front of you.” [P5].

3.7.4 Scenario D: Left turn at uncontrolled intersections. In this
traffic scenario, participants needed help assessing the traffic and
making a decision based on the traffic flow from all directions, which
made them feel unsafe. They mentioned fear of being overseen by
car drivers and an issue of estimating the time to cross a given gap.
As some participants mentioned: “You have to expect traffic from all
directions.” [P2], “I still had to watch out for oncoming traffic, and
from the feeling here, I felt a little unsafe because I didn’t know what
the oncoming traffic was doing.” [P11], and “Cars from all sides and
even those in my lane made me feel unsafe.” [P4].

3.8 Discussion
Our results indicate that head movements reflect cyclists’ perceived
safety in the Virtual Reality bicycle simulator. The frequency and
duration of head rotations are more essential indicators of perceived
safety than their size. Regardless of how big or small the angles of
head rotations are, their frequency and duration indicate cyclists’
feeling of safety. More specifically, the higher the frequency of head
rotations, the lower the perceived safety. Similarly, the higher the
duration of head rotations, the lower the perceived safety. Apart
from head movements, the time spent in situations (total or stand-
ing) indicates cyclists’ perceived safety. The more time cyclists
spend in situations, the less safe they feel. In other words, they
spend more time in a situation if it makes decision-making difficult.
Looking at the duration spent at situations was rather exploratory
and requires further exploration in the future. We also found that
cyclists felt safer in situations they are more familiar with (ob-
structed bicycle lane) or with a dedicated infrastructure (safety
pocket). While the former situation demonstrates an issue of many
parked cars on the side of the road, the latter shows that cyclists
need a dedicated place on the road not only while cycling but also
while turning. The other two scenarios related to lane changing and
turning left at uncontrolled intersections cause a lower feeling of
safety. This can be explained by a more complex decision-making
process that requires checking traffic flows from different directions,
which can be time-consuming and mentally demanding.

As for each traffic situation, head rotation frequency in situations
with obstructed lanes and lanes changing negatively correlates with
perceived safety. Both situations are similar since they require a
shoulder look to check the traffic behind them. In situations with a
lot of traffic, as in our experiment, cyclists felt unsafe overtaking a
car parked on a bicycle lane or changing lanes. Interestingly, the
angle size differs among these situations because cyclists prepare
for lane changing ahead of time, while overtaking an obstacle on a
bicycle lane might require little preparation. This finding reveals
that to quantify cyclists’ behavior, we need to analyze their behavior
in these situations and before them. How big this time frame should
be will depend on the type of situation and is a question for future
research.

Our results show that cycling on a bicycle lane with an obstacle
can be detected based on head rotation angle and frequencies com-
pared to the other three scenarios. On average, cyclists make one
shoulder look to check for upcoming traffic behind them, which
leads to a head rotation angle of about 124°to the left. When cyclists
change a lane for turning left or turn left on uncontrolled intersec-
tions with or without safety pockets, the head rotation angle lies
in the range of [47°; 63°] with a frequency of rotation of around
2-3 times to the left. Moreover, the latter three scenarios require
a longer time to make a crossing or turning decision (total and
standing). This might be explained by the higher complexity of
these situations due to upcoming traffic from different directions
and occasional traffic lights that require cyclists to spend longer
in these situations. Thus, situations with obstructed bicycle lanes
can easily be detected based on the sensor data from head move-
ment angles and frequency. Situations that require turning left at
intersections or while lane changing look similar regarding head
rotations and might need a larger time frame for the data or an
additional quantifier based on the sensor data, e.g., eye tracking.

This experiment helped us understand cyclists’ perceived safety
in different traffic scenarios via head movements. However, it was
conducted in a controlled environment that does not account for
random traffic situations. Thus, we conducted a consequent field
experiment exploring a novel approach to detect head movements
via AirPods and an iPhone, which we describe in the following.

4 APPROACH FOR MEASURING HEAD
ROTATIONS USING IPHONE AND AIRPODS

To measure head rotations while cycling outdoors, we developed
and implemented a concept based on iPhone and Airpods 3 sensors.
We placed an iPhone on the non-moving part in front of a bicycle
and AirPods in the participant’s ears. The smartphone provides
a better understanding of bicycle movements, and the AirPods
reflect cyclists’ head movement. Since both a bicycle and a cyclist
create one locomotion unit and are placed in the same relation
towards each other, the combination of the sensor data provides a
full picture of head movements. The Inertial Measurement Units
inside both devices allow for measuring individual device rotations,
and the subtraction of these rotations provides the head rotation.
The AirPods form a 6 DoF system and allow the rotation calculation
based on the accelerometer (𝑥𝑎𝑐𝑐 , 𝑦𝑎𝑐𝑐 , 𝑧𝑎𝑐𝑐 ) and the gyroscope data
(𝑥𝑔𝑦𝑟𝑜 , 𝑦𝑔𝑦𝑟𝑜 , 𝑧𝑔𝑦𝑟𝑜 ). The iPhone has 9 DoF with an additional 3
DoF from the magnetometer (𝑥𝑚𝑎𝑔, 𝑦𝑚𝑎𝑔, 𝑧𝑚𝑎𝑔). To calculate a yaw
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Figure 5: Field study: (a) Participant wearing AirPods on a bicycle with an iPhone and Insta 360 camera. (b) A bicycle with a
smartphone showing navigation directions and a screenshot from the app. (c) A route cyclists followed in the experiment.

value relative to the bike rotations reflected by the iPhone rotation
matrix, we used Diebel’s formula [7]. We used the rotation matrices
from Apples Core Motion6 for the iPhone (P) and the AirPods (A):

𝑀P =
©«
𝑚𝑝11 𝑚𝑝12 𝑚𝑝13
𝑚𝑝21 𝑚𝑝22 𝑚𝑝23
𝑚𝑝31 𝑚𝑝32 𝑚𝑝33

ª®¬ ;𝑀A =
©«
𝑚𝑎11 𝑚𝑎12 𝑚𝑎13
𝑚𝑎21 𝑚𝑎22 𝑚𝑎23
𝑚𝑎31 𝑚𝑎32 𝑚𝑎33

ª®¬
To calculate a rotation matrix relative to the bicycle, we multi-

plied the iPhone’s rotation matrix by the AirPods’ inverted rotation
matrix:

𝑀AngleRelativeToiPhone = 𝑀P𝑀
−1
A = 𝑀P𝑀

𝑇
A .

𝑀AngleRelativeToiPhone provides final Euler angles as follows:
• 𝑌𝑎𝑤 = 𝜓 (𝑀AngleRelativeToiPhone) = 𝑎𝑡𝑎𝑛2(𝑀12, 𝑀11)
• 𝑅𝑜𝑙𝑙 = 𝜙 (𝑀AngleRelativeToiPhone) = 𝑎𝑡𝑎𝑛2(𝑀23, 𝑀33)
• 𝑃𝑖𝑡𝑐ℎ = 𝜃 (𝑀AngleRelativeToiPhone) = −𝑎𝑠𝑖𝑛(𝑀13)

Compared to complicated and often bulky solutions, the pro-
posed approach is minimalistic and accessible to quantifying cy-
clists’ behavior. Since many previously proposed assistive tech-
nology for cyclists have focused on the output [26–29, 35], this
solution creates a ground for using output systems, e.g., warnings
on demand without mentally overloading cyclists.The concept can
also be used to communicate cyclists’ behavioral states to other
users for safety reasons, e.g., a cyclist did not see an upcoming car.

5 STUDY 2: CYCLING OUTDOORS
To evaluate our proposed approach and verify the findings from the
first experiment, we conducted a field study in which participants
cycled outdoors in traffic. The research question for this experiment
is: “To what extend can we use cyclists’ head rotations to quantify
their perceived safety under real traffic conditions?”

5.1 Participants and Study Design
We recruited eight participants (2 female, 6 male) aged between 22
and 28 years (𝑀 = 24.8 years, 𝑆𝐷 = 1.9 years) using social networks
and personal contacts. Five participants participated in our VR study.
Two participants cycle every day, two participants once a week, and
four once a month. Four participants described themselves as safe
cyclists, and the other four as medium-safe cyclists. Participants
did not receive any compensation for their participation.
6https://developer.apple.com/documentation/coremotion

Participants cycled one route (5.5 km) in a medium-sized Eu-
ropean city in right-hand traffic that included the four most dan-
gerous situations in a pre-defined order as investigated in the first
experiment (Figure 3) based on previous work [31] and statistical
reports [5, 10, 23]. Unlike the cycling route in the VR experiment,
these situations were repeated two times for turning left with inter-
section pockets, obstructed lanes, and lane changing and nine times
for turning left at uncontrolled intersections to avoid a long cycling
route. Participants’ task was to safely ride a bicycle along the pre-
defined route displayed on the smartphone on the handlebar. The
study took place on sunny days outside peak hours (between 10
am and 3 pm) to avoid large traffic flows for safety reasons and to
create comparable cycling conditions for all participants.

5.2 Apparatus
We used a bicycle (29-inch wheel) with an iPhone on the handlebar
(Figure 5 a and b) and provided participants with AirPods 3 con-
nected to the iPhone. We installed a self-developed iOS application
on the iPhone to measure rotations for both the iPhone and AirPods
in the background and a custom navigation application similar to
Google Maps showing a pre-defined route (Figure 5c) in the fore-
ground 7. The navigation included vocal turn-by-turn instructions
presented through the AirPods and a constantly updated screen
showing the distance to the next turn and a green line indicating
the route (Figure 5b). We logged rotations of iPhone and AirPods
during the whole ride duration. Additionally, we placed an Insta360
ONE RS camera8 on the bicycle’s handlebar to record the cyclists’
behavior and environment. The video feed served as ground truth
to assess our approach using the head rotation data (Figure 5b).

5.3 Measurements
Wemeasured the same dependent variables as in the previous study
for consistency and comparability. However, we measured the head
rotation angle, frequency, and duration using iPhone and AirPods.

5.4 Procedure
After obtaining informed consent, we collected the participants’
demographic data, explained the experiment’s goal, and provided

7https://github.com/Nomandes/quantibike
8https://www.insta360.com/de/product/insta360-oners

https://developer.apple.com/documentation/coremotion
https://github.com/Nomandes/quantibike
https://www.insta360.com/de/product/insta360-oners
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Table 2: The field study results: median head rotation angles,
frequencies, and duration left and right, total time spent
at situations and time spent standing, and perceived safety.
Angle = Head rotation angle, Freq. = Head rotation frequency,
Dur. = Head rotation duration, S = Safety.

Scenario Angle Freq. Dur. Time S
L R L R L R Stand. Total

A: Left turn at intersec-
tions with pockets

43° 34° 4.5 3.5 1.3 1.4 30 54 4

B: Obstructed lane – – – – – – – – –
C: Lane change for turn-
ing left

47° 33° 2 1.5 0.4 0.4 4 28 3.5

D: Left turn at uncon-
trolled intersections

41° 45° 3 2 1 1 5 22 4.5

an opportunity to ride on the bicycle for familiarization purposes.
The task was to cycle through the city by following the visual and
auditory navigation on the smartphone and the AirPods (Figure 5a).
Participants were instructed to cycle safely and be considerate
regarding vehicles. After the ride, the participants indicated their
perceived safety in the experienced scenarios and justified their
score. The study lasted approximately one hour per participant.

5.5 Data analysis
For the video analysis, one of the co-authors annotated the videos
second-by-second based on the start and end of a head rotation,
which included: (1) looking at the start second andwatchingwhether
the person rotated a head and (2) when participants rotated their
head, minutes and seconds from start to finish were marked on
the video. These annotations were compared to the head rotations
detected with Airpods and iPhone. We excluded situations with
obstructed lanes because participants did not experience them de-
spite our deliberate attempts to guide them through streets with
many parked cars. The reality shows that participants cycled in the
middle of the roads with many parked cars because there was not
much traffic, and a shoulder look was unnecessary. Therefore, we
outline the results for the remaining three scenarios.

5.6 Quantitative results
The summary of results is shown in Table 2 and Figure 6.

5.6.1 Head rotation angle. Participants had the largest head ro-
tation angles to the left when changing lanes (𝑀𝑑 = 47°, 𝐼𝑄𝑅 =

35), followed by turning left at uncontrolled intersections (𝑀𝑑 =

41°, 𝐼𝑄𝑅 = 9) and intersections with pockets (𝑀𝑑 = 43°, 𝐼𝑄𝑅 = 14).
However, this difference is not statistically significant as shown
by a Friedman test (𝜒2 (2) = 0.25, 𝑝 > 0.05, 𝜂2 = 0.02). Similarly,
cyclists had the largest rotation angles to the right when changing
lanes (𝑀𝑑 = 33°, 𝑆𝐷 = 53), followed by turning left at uncontrolled
intersections (𝑀𝑑 = 45°, 𝐼𝑄𝑅 = 12) and intersections with a pocket
(𝑀𝑑 = 34°, 𝐼𝑄𝑅 = 5). This difference is not statistically significant
as shown by a Friedman test (𝜒2 (2) = 2.57, 𝑝 > 0.05, 𝜂2 = 0.18).

5.6.2 Head rotation frequency. Cyclists turn their heads left more
frequently when turning left at intersections with pockets (𝑀𝑑 =

4.5, 𝐼𝑄𝑅 = 3.375), followed by uncontrolled intersections (𝑀𝑑 =

3, 𝐼𝑄𝑅 = 1) and when changing a lane (𝑀𝑑 = 2, 𝐼𝑄𝑅 = 1.5). This
differences is not statistically significant as shown by a Friedman
test (𝜒2 (2) = 2.4, 𝑝 > 0.05, 𝜂2 = 0.15). For rotation frequency to the
right, cyclists had more rotations when turning left at intersections
with pockets (𝑀𝑑 = 3.5, 𝐼𝑄𝑅 = 3.75), followed by uncontrolled
intersections (𝑀𝑑 = 1.7, 𝐼𝑄𝑅 = 1) and changing a lane (𝑀𝑑 =

1.5, 𝐼𝑄𝑅 = 2.38). This difference is not statistically significant as
shown by a Friedman test (𝜒2 (2) = 2.4, 𝑝 > 0.05, 𝜂2 = 0.15).

5.6.3 Head rotation duration. Head rotations to the left were shorter
when changing a lane (𝑀𝑑 = 0.4𝑠𝑒𝑐, 𝐼𝑄𝑅 = 0.2) than at intersec-
tions with pockets (𝑀𝑑 = 1.3𝑠𝑒𝑐, 𝐼𝑄𝑅 = 0.6) and uncontrolled
intersections (𝑀𝑑 = 1𝑠𝑒𝑐, 𝐼𝑄𝑅 = 0.3). This differences is statisti-
cally significant as shown by a Friedman test (𝜒2 (2) = 7.8, 𝑝 <

0.05, 𝜂2 = 0.5). The post-hoc analysis reveals a statistically signifi-
cant difference between lane changing and uncontrolled intersec-
tions (𝑝 < 0.05) and intersections with pockets (𝑝 < 0.05), but not
between intersections with pockets and uncontrolled intersections
(𝑝 > 0.05). Head rotations to the right when changing lane were
shorter (𝑀𝑑 = 0.4𝑠𝑒𝑐, 𝐼𝑄𝑅 = 0.2) compared to uncontrolled inter-
sections (𝑀𝑑 = 1𝑠𝑒𝑐, 𝐼𝑄𝑅 = 0.4) and intersections with pockets
(𝑀𝑑 = 1.4𝑠𝑒𝑐, 𝐼𝑄𝑅 = 0.5). This finding is statistically significant as
shown by a Friedman test (𝜒2 (2) = 10.8, 𝑝 < 0.05, 𝜂2 = 0.7). All
pairwise comparisons are statistically significant (𝑝 < 0.05).

5.6.4 Total duration at situations. Participants spent less time at
uncontrolled intersections when turning left (𝑀 = 22𝑠𝑒𝑐, 𝑆𝐷 = 4)
than lane changing (𝑀 = 28𝑠𝑒𝑐, 𝑆𝐷 = 14) and turning at inter-
sections with pockets (𝑀 = 54𝑠𝑒𝑐, 𝑆𝐷 = 24). Using a One-way
ANOVA, we found that this difference is statistically significant
(𝐹 (2, 21) = 7.9, 𝑝 < 0.001). The post-hoc analysis shows a statis-
tically significant difference between turning left at uncontrolled
intersections and intersections with pockets (𝑝 < 0.05). The remain-
ing pairwise comparisons are not statistically significant (𝑝 > 0.05).

5.6.5 Total duration standing at situations. Cyclists waited the
longest at intersections with pockets (𝑀𝑑 = 30𝑠𝑒𝑐, 𝐼𝑄𝑅 = 32),
followed by lane changing (𝑀𝑑 = 4𝑠𝑒𝑐, 𝐼𝑄𝑅 = 12) and left turn
at uncontrolled intersections (𝑀𝑑 = 5𝑠𝑒𝑐, 𝐼𝑄𝑅 = 2). This finding
is statistically significant as shown by a Friedman test (𝜒2 (2) =

6.8, 𝑝 < 0.05, 𝜂2 = 0.42). The post-hoc analysis shows that cyclists
waited at intersections with pockets statistically longer compared
to the other two situations (𝑝 < 0.05). The remaining pairwise
comparisons are not statistically significantly different (𝑝 > 0.05).

5.6.6 Perceived safety. Perceived safety was comparable with turn-
ing left at uncontrolled intersections being the highest (𝑀𝑑 =

4.5, 𝐼𝑄𝑅 = 1.25), followed by turning left at intersections with pock-
ets (𝑀𝑑 = 4, 𝐼𝑄𝑅 = 1) and lane changing (𝑀𝑑 = 3.5, 𝐼𝑄𝑅 = 1.25).
This finding is confirmed by a statistically non-significant difference
shown by a Friedman test (𝜒2 (2) = 5.2, 𝑝 > 0.05, 𝜂2 = 0.32).

5.6.7 Correlations. We analyzed the perceived safety over all sit-
uations together and separately. Summarized over all situations,
unlike the indoor experiment, we did not find statistically significant
correlations between perceived safety and head rotation frequen-
cies left (𝑟𝑠 = −0.2, 𝑝 > 0.05) and right (𝑟𝑠 = −0.15, 𝑝 > 0.05) as
well as head rotation duration left (𝑟𝑠 = −0.13, 𝑝 > 0.05) and right
(𝑟𝑠 = −0.31, 𝑝 > 0.05) Figure 6. The correlation is not statistically
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Figure 6: Correlations outdoors (over all situations) between
perceived safety and head rotation frequencies and duration.

significant between perceived safety and total duration at situa-
tions (𝑟𝑠 = −0.02, 𝑝 > 0.05) and total duration standing at situations
(𝑟𝑠 = −0.1, 𝑝 > 0.05). Similarly to the indoors, the correlation is not
statistically significant between perceived safety and head rotation
angles left (𝑟𝑠 = −0.12, 𝑝 > 0.05) and right (𝑟𝑠 = −0.12, 𝑝 > 0.05). As
for each individual situation, there is a statistically significant corre-
lation between perceived safety and head rotation frequency to the
left (𝑟𝑠 = −0.49, 𝑝 < 0.05) and right (𝑟𝑠 = −0.75, 𝑝 < 0.05) for the
turning left at uncontrolled intersections. Moreover, for the left turn
at uncontrolled intersections, we observed a statistically significant
correlation between perceived safety and head rotation duration
to the left (𝑟𝑠 = −0.75, 𝑝 = 0.03) and right (𝑟𝑠 = −0.88, 𝑝 < 0.05)
for the lane changing situation. The remaining correlations are not
statistically significant (𝑝 > 0.05).

5.7 Qualitative results
5.7.1 Scenario A: Left turn at intersections with pockets. Cyclists
experienced few difficulties since it was easy to understand how
to use the pocket. They could disregard the approaching traffic
flow and had sufficient isolation from it. As they noted: “Easy to
understand concept of left turn” [P2], “It is very clear where to go as
a cyclist and you have to worry less about oncoming traffic.” [P3],
and “You get isolated from the rest of traffic if merging into a pocket.
No communication with other drivers needed, no waiting time in the
middle crossroad.” [P6]. Cyclists felt safe due to a separate bicycle
lane and clear indications regulated by a traffic light. However,
participants sometimes felt unsafe because they needed to know if
other road users knew and understood intersections with pockets
for cyclists. As some mentioned: “The only thing that unsettled me
was that I had the feeling that other road users did not know the pocket
and were surprised why I was standing there.” [P3], “Everything was
regulated by a traffic light and you did not have to cross the traffic”
[P5], and “It feels safe to have a dedicated space for bicycles.” [P6].

5.7.2 Scenario C: Lane change for turning left. This scenario was
perceived as rather difficult due to the necessity to estimate traffic
in the front and behind. As participants mentioned: “[I] needed to
take a look at the traffic behind me, need to switch lanes, need to know
this sometime before the crossroads” [P1] and “Stressful, especially if

you realize too late that you should have gotten into the left lane. If the
road is busy, I would prefer to drive on the sidewalk and turn left at the
traffic lights.” [P3]. They have also noted the importance of a good
overview of the situation and arrow markings on the road. As some
commented: “You need a good view and have to calculate when you
can turn left.” [P7] and “Street arrows showwhere to go” [P3.] Cyclists
felt unsafe due to the danger of cars approaching from behind and
active traffic observations. As some mentioned: “Sometimes other
drivers attempt to pass while I am signaling a turn. This needs a
lot of traffic observation.” [P6] and “Danger of overlooking a car or
distorting the handlebars” [P5]. However, three participants did not
experience cars approaching from behind and felt relatively safe.

5.7.3 Scenario D: Left turn at uncontrolled intersections. For this
scenario, the participants mentioned the lack of traffic to stress
them, easy decision-making process as there were fewer factors
to think about, and the advantage of narrow streets, so that cars
could not overtake them while waiting to cross. As some of them
commented “not much traffic, a common scenario, no difficult turns”
[P1], “Not difficult when there is no traffic, a little more difficult when
there is traffic.”[P3], and “There were no cars coming in that direction
and if they were then they had to wait for me.” [P8].

6 DISCUSSION AND FUTUREWORK
Our results show that head rotation frequency and duration and
not the size of rotations indicate perceived cyclists’ safety. The
higher the frequency and duration of head rotations, the lower
the feeling of safety. These correlations apply to all four situations
explored indoors and one (turning left at uncontrolled intersections)
outdoors. Moreover, our proposed approach employed outdoors has
the potential to create a crowdsourced risk assessment of cycling
routes. We discuss these findings in the following subsections.

6.1 Perceived Safety and Head Movements
As discussed, perceived cyclists’ safety is reflected via head ro-
tation frequency and duration. The outdoor results confirm our
indoor findings but only for one situation – turning left at uncon-
trolled intersections. We see multiple reasons for this difference.
Firstly, indoor and outdoor cycling experiences are different, given
that cyclists are more used to cycling outdoors than indoors and
might have a higher feeling of confidence and familiarity with
traffic situations, as reflected in the qualitative feedback. Secondly,
cycling indoors is predictable and predetermined by the virtual en-
vironment, while cycling outdoors is “noisy” and introduces many
uncontrolled situations. For example, we created an outdoor route
that included streets with many parked cars. Still, due to the lack of
traffic outside of rush hour, all the participants cycled in the middle
of the road without overtaking parked cars, which resulted in the
exclusion of scenario B from our data analysis. For safety reasons,
we purposefully decided to conduct the outdoor experiment outside
of rush hours, while in the indoor simulator, participants experi-
enced a busy traffic flow. Thirdly, we conducted our experiment
in a European city with a well-developed cycling infrastructure
that facilitates a safe feeling for cyclists and higher awareness of
them from other road users, especially car drivers. Therefore, future
work should explore busier and more controlled traffic scenarios
outdoors that would increase their head rotations.
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As for the size of head rotations, we discovered that it does
not correlate with perceived safety, given that some situations
require certain behaviors, such as shoulder look, that lead to a
rotation angle larger than 90° but does not necessarily lead to a
high frequency or duration. However, the head rotation angle for
lane changing for turning left did not lead to angles larger than
90° unlike overtaking an obstacle on obstructed lanes that resulted
at 124°. We assume that cyclists changed lanes in advance rather
than at the intersections where we measured their behavior. This
temporal aspect of cyclists’ head movements is another interesting
line of research that needs further investigation, such as when the
head turns should be measured, how big the timeframe should be,
and what they mean at specific times and traffic situations. We
also found that perceived cyclists’ safety was rated higher outdoors
than indoors. This is likely due to the lack of traffic and greater
familiarity with bicycling outdoors than indoors. However, we
observed that outdoor cyclists turned their heads to the right more
than indoor cyclists. This can be explained by the fact that cyclists
are more likely to pay attention to traffic coming from the left and
right in real traffic than in a simulation. We also explored situation
detection from our data, as our approach can extract different types
of interactions. Our results show that shoulder glances, overtaking,
and checking traffic before turning left are all possible actions we
can detect on the road. Therefore, future work should explore more
sensor data to expand the situations that can be detected.

6.2 Quantifying head movements
Since studying human activity involves understanding head mo-
tion [8, 48], we employed widely available off-the-shelf hardware
and investigated its capabilities under real-world conditions. We ex-
tracted and differentiated head movements using the 360◦ video as
a ground truth. The setup was reliable, and participants reported no
problems using headphones while cycling. Since the setup needs no
initial calibration, it can be suitable for unsupervised crowdsourc-
ing in future work. Due to its reliance on widespread hardware, we
envision the usage in decentralized larger applications utilizing pri-
vately owned hardware. However, the setup might require further
improvements. One is related to the drift of the angles over time
that can be addressed via additional magnetometer corrections, as
discussed by previous work [9, 13]. However, more approaches
need further exploration in the future, e.g., eye tracking to track
the movement of the eyes to provide information about the head’s
movement concerning visual stimuli. Additionally, future work
might need to explore head motion capture that involves using
cameras and sensors to track the movement of markers placed on
the head to create a 3D model of the head’s movement. Our results
show initial findings based on the proposed minimalistic approach
and provide a better understanding of quantifying cyclists’ per-
ceived safety. Similarly to previous work, it can also be employed
for augmenting helmets with Inertial Measurement Units to detect
head movements and improve the recognition rate [3, 14, 16] and
sending rescue requests and prevent accidents [4].

6.3 Virtual Reality vs. Outdoors
We discovered the participants’ differences in perception and be-
havior between virtual reality and the outdoors. Cyclists perceive

some cycling scenarios as less complicated or with comparable
difficulty outdoors, e.g., lane changing and turning left at uncon-
trolled intersections, than in the VR bicycle simulator. Although VR
bicycle simulators are designed to replicate cycling in safe indoor
conditions, simulation most likely restricts cyclists’ perception of
the environment necessary to decide on traffic. Moreover, the VR
bicycle simulator lacks realism and might be a novel experience,
unlike the outdoors that cyclists are used to. The field of view (FoV)
influenced the cycling perception of traffic, given that the Vive
Index has a reported FoV of 130°, which is smaller than >180°of the
human eyes. This has likely affected head rotations since moving
eyes side-wise allows for increased visibility without head move-
ment, which is impossible in VR due to the flat display in front of
the eyes. Another explanation could be higher confidence and more
experience cycling outdoors than in a simulator. This brings us to
the conclusion that bicycle simulators require a higher level of real-
ism that places a technical challenge. Although outdoor evaluations
can be dangerous, they provide considerably different results from
indoors. Lastly, detection of the head movements could be improved
using machine learning analysis of the time series [8, 13, 44, 47],
which should be explored in future work.

7 LIMITATIONS
Outdoors, we observed a drift over time resulting from the lack of a
magnetometer. We tried a straightforward approach by calculating
the mean value for a defined timeframe of 60 seconds, using it
as the baseline value to extract movements and angles. AirPods
Max could yield more accurate results, as they come with a built-in
magnetometer. Given the focus on head movements, we excluded
other methods for understanding cyclists’ behavior and physio-
logical data, e.g., ECG and EEG. However, with our findings, we
step toward understanding cyclists’ perceived safety. Our proposed
approach was verified using the data from the video observations.
It would require a comparison with other established methods
to understand its limitations and precision of measurements. The
outdoor evaluation included eight participants; more participants
are needed for future evaluations. However, with this work, we
initially explored head movements to quantify cyclists’ perceived
safety. Lastly, participants indicated their safety after a ride, which
can potentially introduce recall bias. Thus, including a real-time
safety self-report can improve this aspect.

8 CONCLUSION
We investigated the quantification of perceived cyclists’ safety by
head rotation in virtual reality and outdoors. Our results from the
indoor experiment suggest that the frequency and duration of head
rotation, rather than the rotation angle, reflect cyclists’ perceived
safety. Using our approach based on Apple AirPods and an iPhone
attached to a bicycle outdoors, we confirmed the indoor results that
perceived safety correlates with the frequency and duration of head
rotation, but only at uncontrolled intersections when turning left.
Thus, the frequency and duration of head turn, rather than angles,
reflect the perceived safety of cyclists in specific traffic situations,
and our approach can facilitate risk assessment of bicycle lanes.



QuantiBike: Quantifying Perceived Cyclists’ Safety via Head Movements in Virtual Reality and Outdoors SUI ’23, October 13–15, 2023, Sydney, NSW, Australia

ACKNOWLEDGMENTS
We would like to thank all participants who took part in our exper-
iment.

REFERENCES
[1] Josh Andres, M.C. Schraefel, Nathan Semertzidis, Brahmi Dwivedi, Yutika C.

Kulwe, Juerg von Kaenel, and Florian Floyd Mueller. 2020. Introducing Periph-
eral Awareness as a Neurological State for Human-Computer Integration. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York,
NY, USA, 1–13. https://doi.org/10.1145/3313831.3376128

[2] Sameh Neili Boualia and Najoua Essoukri Ben Amara. 2019. Pose-based Human
Activity Recognition: a review. In 2019 15th InternationalWireless Communications
& Mobile Computing Conference (IWCMC). 1468–1475. https://doi.org/10.1109/
IWCMC.2019.8766694

[3] Yu-Ren Chen, Chang-Ming Tsai, Ka-Io Wong, Tzu-Chang Lee, Chee-Hoe Loh, Jia-
Ching Ying, and Yi-Chung Chen. 2019. Motorcyclists’ Head Motions Recognition
by Using the Smart Helmet with Low Sampling Rate. In 2019 Twelfth International
Conference on Ubi-Media Computing (Ubi-Media). 157–163. https://doi.org/10.
1109/Ubi-Media.2019.00038

[4] Yosoon Choi and Yeanjae Kim. 2021. Applications of Smart Helmet in Applied
Sciences: A Systematic Review. Applied Sciences 11, 11 (2021). https://doi.org/10.
3390/app11115039

[5] European Commission. 2016. Proactive Safety for Pedestrians and Cyclists: Accident
Analysis, Naturalistic Observations and Project Implications. http://www.prospect-
project.eu/

[6] Alexandru Dancu, Velko Vechev, Adviye Ayça Ünlüer, Simon Nilson, Oscar
Nygren, Simon Eliasson, Jean-Elie Barjonet, Joe Marshall, and Morten Fjeld. 2015.
Gesture Bike: Examining Projection Surfaces and Turn Signal Systems for Urban
Cycling. In Proceedings of the 2015 International Conference on Interactive Tabletops
& Surfaces (Madeira, Portugal) (ITS ’15). Association for Computing Machinery,
New York, NY, USA, 151–159. https://doi.org/10.1145/2817721.2817748

[7] James Diebel. 2006. Representing attitude: Euler angles, unit quaternions, and
rotation vectors. Matrix 58, 15-16 (2006), 1–35.

[8] Chih-Hsuan Fang and Chih-Peng Fan. 2019. Effective Marker and IMU Based
Calibration for Head Movement Compensation of Wearable Gaze Tracking. In
2019 IEEE International Conference on Consumer Electronics (ICCE). 1–2. https:
//doi.org/10.1109/ICCE.2019.8661913

[9] Andrea Ferlini, Alessandro Montanari, Cecilia Mascolo, and Robert Harle.
2020. Head Motion Tracking Through In-Ear Wearables. In Proceedings of the
1st International Workshop on Earable Computing (London, United Kingdom)
(EarComp’19). Association for Computing Machinery, New York, NY, USA, 8–13.
https://doi.org/10.1145/3345615.3361131

[10] Irene Gohl, A Schneider, J Stoll, M Wisch, and V Nitsch. 2016. Car-to-cyclist
accidents from the car driver’s point of view. In International Cycling Safety
Conference (ICSC).

[11] Weixi Gu, Yunxin Liu, Yuxun Zhou, Zimu Zhou, Costas J. Spanos, and Lin Zhang.
2017. BikeSafe: Bicycle Behavior Monitoring via Smartphones. In Proceedings of
the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting and Proceedings of the 2017 ACM International Symposium on Wearable
Computers (Maui, Hawaii) (UbiComp ’17). Association for Computing Machinery,
New York, NY, USA, 45–48. https://doi.org/10.1145/3123024.3123158

[12] Xiang Guo, Austin Angulo, Erin Robartes, T Donna Chen, and Arsalan Heydarian.
2022. Orclsim: A system architecture for studying bicyclist and pedestrian
physiological behavior through immersive virtual environments. Journal of
advanced transportation 2022 (2022). https://doi.org/10.1155/2022/2750369

[13] Hobeom Han, Hyeongkyu Jang, and Sang Won Yoon. 2020. Novel Wearable
Monitoring System of Forward Head Posture Assisted by Magnet-Magnetometer
Pair and Machine Learning. IEEE Sensors Journal 20, 7 (2020), 3838–3848. https:
//doi.org/10.1109/JSEN.2019.2959817

[14] Zengyi Han, Xuefu Dong, Yuuki Nishiyama, and Kaoru Sezaki. 2021. HeadSense:
A Head Movement Detecting System for Micro-Mobility Riders. In Adjunct Pro-
ceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing and Proceedings of the 2021 ACM International Symposium on
Wearable Computers (Virtual, USA) (UbiComp ’21). Association for Computing
Machinery, New York, NY, USA, 26–27. https://doi.org/10.1145/3460418.3479282

[15] Brianna Jean Huxtable, Carlo Ka-Ho Lai, Johnson Wen Jun Zhu, Paulina Mun-Yee
Lam, Yeseul Tracy Choi, Carman Neustaedter, and Greg J. Corness. 2014. Ziklo:
Bicycle Navigation through Tactile Feedback. In CHI ’14 Extended Abstracts on
Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI EA ’14).
Association for Computing Machinery, New York, NY, USA, 177–178. https:
//doi.org/10.1145/2559206.2579481

[16] Severin Ionut-Cristian and Dobrea Dan-Marius. 2021. Using Inertial Sensors
to Determine Head Motion&mdash;A Review. Journal of Imaging 7, 12 (2021).
https://doi.org/10.3390/jimaging7120265

[17] Carolin Jansson. 2019. Factors important to street users’ perceived safety on a main
street. Master’s thesis. KTH, Urban and Regional Studies.

[18] Eric M. Jones, Ted Selker, and Hyemin Chung. 2007. What You Said about
Where You Shook Your Head: A Hands-Free Implementation of a Location-Based
Notification System (CHI EA ’07). Association for Computing Machinery, New
York, NY, USA, 2477–2482. https://doi.org/10.1145/1240866.1241027

[19] Ahmet-Serdar Karakaya, Jonathan Hasenburg, and David Bermbach. 2020. SimRa:
Using crowdsourcing to identify near miss hotspots in bicycle traffic. Pervasive
and Mobile Computing 67 (2020), 101197. https://doi.org/10.1016/j.pmcj.2020.
101197

[20] Fahim Kawsar, Chulhong Min, Akhil Mathur, and Alessandro Montanari. 2018.
Earables for Personal-Scale Behavior Analytics. IEEE Pervasive Computing 17, 3
(2018), 83–89. https://doi.org/10.1109/MPRV.2018.03367740

[21] Francisco Kiss, Robin Boldt, Bastian Pfleging, and Stefan Schneegass. 2018.
Navigation Systems for Motorcyclists: Exploring Wearable Tactile Feedback
for Route Guidance in the Real World. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI
’18). Association for Computing Machinery, New York, NY, USA, 1–7. https:
//doi.org/10.1145/3173574.3174191

[22] Thomas Kosch, Andrii Matviienko, Florian Müller, Jessica Bersch, Christopher
Katins, Dominik Schön, and Max Mühlhäuser. 2022. NotiBike: Assessing Target
Selection Techniques for Cyclist Notifications in Augmented Reality. Proc. ACM
Hum.-Comput. Interact. 6, MHCI, Article 197 (sep 2022), 24 pages. https://doi.
org/10.1145/3546732

[23] Matthias Kuehn, Thomas Hummel, and Antje Lang. 2015. Cyclist-car accidents–
their consequences for cyclists and typical accident scenarios. In Proceedings of
the 24th International Conference on the Enhanced Safety of Vehicles.

[24] Dong Ma, Andrea Ferlini, and Cecilia Mascolo. 2022. Innovative Human Motion
Sensing With Earbuds. GetMobile: Mobile Comp. and Comm. 25, 4 (mar 2022),
24–29. https://doi.org/10.1145/3529706.3529713

[25] Alessandra Mantuano, Silvia Bernardi, and Federico Rupi. 2017. Cyclist gaze
behavior in urban space: An eye-tracking experiment on the bicycle network of
Bologna. Case Studies on Transport Policy 5, 2 (2017), 408–416. https://doi.org/
10.1016/j.cstp.2016.06.001

[26] Andrii Matviienko, Swamy Ananthanarayan, Shadan Sadeghian Borojeni, Yan-
nick Feld, Wilko Heuten, and Susanne Boll. 2018. Augmenting Bicycles and
Helmets with Multimodal Warnings for Children. In Proceedings of the 20th Inter-
national Conference on Human-Computer Interaction with Mobile Devices and Ser-
vices (Barcelona, Spain) (MobileHCI ’18). Association for Computing Machinery,
NewYork, NY, USA, Article 15, 13 pages. https://doi.org/10.1145/3229434.3229479

[27] Andrii Matviienko, Swamy Ananthanarayan, Stephen Brewster, Wilko Heuten,
and Susanne Boll. 2019. Comparing Unimodal Lane Keeping Cues for Child Cy-
clists. In Proceedings of the 18th International Conference on Mobile and Ubiquitous
Multimedia (Pisa, Italy) (MUM ’19). Association for Computing Machinery, New
York, NY, USA, Article 14, 11 pages. https://doi.org/10.1145/3365610.3365632

[28] Andrii Matviienko, Swamy Ananthanarayan, Abdallah El Ali, Wilko Heuten,
and Susanne Boll. 2019. NaviBike: Comparing Unimodal Navigation Cues for
Child Cyclists. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300850

[29] Andrii Matviienko, Swamy Ananthanarayan, Raphael Kappes, Wilko Heuten, and
Susanne Boll. 2020. Reminding Child Cyclists about Safety Gestures. In Proceed-
ings of the 9TH ACM International Symposium on Pervasive Displays (Manchester,
United Kingdom) (PerDis ’20). Association for Computing Machinery, New York,
NY, USA, 1–7. https://doi.org/10.1145/3393712.3394120

[30] Andrii Matviienko, Jean-Baptiste Durand-Pierre, Jona Cvancar, and Max
Mühlhäuser. 2023. Text Me If You Can: Investigating Text Input Methods
for Cyclists. In Extended Abstracts of the 2023 CHI Conference on Human Fac-
tors in Computing Systems (Hamburg, Germany) (CHI EA ’23). Association
for Computing Machinery, New York, NY, USA, Article 270, 7 pages. https:
//doi.org/10.1145/3544549.3585734

[31] Andrii Matviienko, Florian Heller, and Bastian Pfleging. 2021. Quantified Cycling
Safety: Towards a Mobile Sensing Platform to Understand Perceived Safety of
Cyclists. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems (Yokohama, Japan) (CHI EA ’21). Association for Computing
Machinery, New York, NY, USA, Article 262, 6 pages. https://doi.org/10.1145/
3411763.3451678

[32] Andrii Matviienko, Hajris Hoxha, and Max Mühlhäuser. 2023. What does it
mean to cycle in Virtual Reality? Exploring Cycling Fidelity and Control of VR
Bicycle Simulators. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3544548.3581050

[33] Andrii Matviienko, Damir Mehmedovic, Florian Müller, and Max Mühlhäuser.
2022. "Baby, You Can Ride My Bike": Exploring Maneuver Indications of Self-
Driving Bicycles Using a Tandem Simulator. Proc. ACM Hum.-Comput. Interact.
6, MHCI, Article 188 (sep 2022), 21 pages. https://doi.org/10.1145/3546723

[34] Andrii Matviienko, Florian Müller, Dominik Schön, Régis Fayard, Salar Abaspur,
Yi Li, and Max Mühlhäuser. 2022. E-ScootAR: Exploring Unimodal Warnings for
E-Scooter Riders in Augmented Reality. In Extended Abstracts of the 2022 CHI

https://doi.org/10.1145/3313831.3376128
https://doi.org/10.1109/IWCMC.2019.8766694
https://doi.org/10.1109/IWCMC.2019.8766694
https://doi.org/10.1109/Ubi-Media.2019.00038
https://doi.org/10.1109/Ubi-Media.2019.00038
https://doi.org/10.3390/app11115039
https://doi.org/10.3390/app11115039
http://www.prospect-project.eu/
http://www.prospect-project.eu/
https://doi.org/10.1145/2817721.2817748
https://doi.org/10.1109/ICCE.2019.8661913
https://doi.org/10.1109/ICCE.2019.8661913
https://doi.org/10.1145/3345615.3361131
https://doi.org/10.1145/3123024.3123158
https://doi.org/10.1155/2022/2750369
https://doi.org/10.1109/JSEN.2019.2959817
https://doi.org/10.1109/JSEN.2019.2959817
https://doi.org/10.1145/3460418.3479282
https://doi.org/10.1145/2559206.2579481
https://doi.org/10.1145/2559206.2579481
https://doi.org/10.3390/jimaging7120265
https://doi.org/10.1145/1240866.1241027
https://doi.org/10.1016/j.pmcj.2020.101197
https://doi.org/10.1016/j.pmcj.2020.101197
https://doi.org/10.1109/MPRV.2018.03367740
https://doi.org/10.1145/3173574.3174191
https://doi.org/10.1145/3173574.3174191
https://doi.org/10.1145/3546732
https://doi.org/10.1145/3546732
https://doi.org/10.1145/3529706.3529713
https://doi.org/10.1016/j.cstp.2016.06.001
https://doi.org/10.1016/j.cstp.2016.06.001
https://doi.org/10.1145/3229434.3229479
https://doi.org/10.1145/3365610.3365632
https://doi.org/10.1145/3290605.3300850
https://doi.org/10.1145/3393712.3394120
https://doi.org/10.1145/3544549.3585734
https://doi.org/10.1145/3544549.3585734
https://doi.org/10.1145/3411763.3451678
https://doi.org/10.1145/3411763.3451678
https://doi.org/10.1145/3544548.3581050
https://doi.org/10.1145/3546723


SUI ’23, October 13–15, 2023, Sydney, NSW, Australia Matviienko et al.

Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI
EA ’22). Association for Computing Machinery, New York, NY, USA, Article 406,
7 pages. https://doi.org/10.1145/3491101.3519831

[35] Andrii Matviienko, Florian Müller, Dominik Schön, Paul Seesemann, Sebastian
Günther, and Max Mühlhäuser. 2022. BikeAR: Understanding Cyclists’ Crossing
Decision-Making at Uncontrolled Intersections Using Augmented Reality. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New
York, NY, USA, Article 366, 15 pages. https://doi.org/10.1145/3491102.3517560

[36] Andrii Matviienko, Florian Müller, Marcel Zickler, Lisa Alina Gasche, Julia Abels,
Till Steinert, and Max Mühlhäuser. 2022. Reducing Virtual Reality Sickness for
Cyclists in VR Bicycle Simulators. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22).
Association for Computing Machinery, New York, NY, USA, Article 187, 14 pages.
https://doi.org/10.1145/3491102.3501959

[37] Prashanth Mohan, Venkata N. Padmanabhan, and Ramachandran Ramjee. 2008.
Nericell: Rich Monitoring of Road and Traffic Conditions Using Mobile Smart-
phones. In Proceedings of the 6th ACM Conference on Embedded Network Sensor
Systems (Raleigh, NC, USA) (SenSys ’08). Association for Computing Machinery,
New York, NY, USA, 323–336. https://doi.org/10.1145/1460412.1460444

[38] Mohsen Nazemi, Michael AB van Eggermond, Alexander Erath, and Kay W
Axhausen. 2018. Studying cyclists’ behavior in a non-naturalistic experiment
utilizing cycling simulator with immersive virtual reality. Arbeitsberichte Verkehrs-
und Raumplanung 1383 (2018). https://doi.org/10.3929/ethz-b-000290955

[39] Martin Pielot, Benjamin Poppinga,Wilko Heuten, and Susanne Boll. 2012. Tacticy-
cle: Supporting Exploratory Bicycle Trips. In Proceedings of the 14th International
Conference on Human-Computer Interaction with Mobile Devices and Services (San
Francisco, California, USA) (MobileHCI ’12). Association for Computing Machin-
ery, New York, NY, USA, 369–378. https://doi.org/10.1145/2371574.2371631

[40] Adnan Rashid and Osman Hasan. 2019. Wearable technologies for hand joints
monitoring for rehabilitation: A survey. Microelectronics Journal 88 (2019), 173–
183. https://doi.org/10.1016/j.mejo.2018.01.014

[41] Sasank Reddy, Katie Shilton, Gleb Denisov, Christian Cenizal, Deborah Estrin,
and Mani Srivastava. 2010. Biketastic: Sensing and Mapping for Better Biking. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Atlanta, Georgia, USA) (CHI ’10). Association for Computing Machinery, New
York, NY, USA, 1817–1820. https://doi.org/10.1145/1753326.1753598

[42] Olaf Reich, Erik Hübner, Bogdan Ghita, Matthias F. Wagner, and Jörg Schäfer.
2020. A Survey Investigating the Combination and Number of IMUs on the
Human Body Used for Detecting Activities and Human Tracking. In 2020 World
Conference on Computing and Communication Technologies (WCCCT). 20–27.
https://doi.org/10.1109/WCCCT49810.2020.9170009

[43] Federico Rupi and Kevin J. Krizek. 2019. Visual Eye Gaze While Cycling: Analyz-
ing Eye Tracking at Signalized Intersections in Urban Conditions. Sustainability
11, 21 (2019). https://doi.org/10.3390/su11216089

[44] Mohammed Faeik Ruzaij, Sebastian Neubert, Norbert Stoll, and Kerstin Thurow.
2016. Auto calibrated head orientation controller for robotic-wheelchair using

MEMS sensors and embedded technologies. In 2016 IEEE Sensors Applications
Symposium (SAS). 1–6. https://doi.org/10.1109/SAS.2016.7479886

[45] Mazen Salous, Dennis Küster, Kevin Scheck, Aytac Dikfidan, Tim Neumann, Felix
Putze, and Tanja Schultz. 2022. SmartHelm: User Studies from Lab to Field for
Attention Modeling. In 2022 IEEE International Conference on Systems, Man, and
Cybernetics (SMC). 1012–1019. https://doi.org/10.1109/SMC53654.2022.9945155

[46] Eldon Schoop, James Smith, and Bjoern Hartmann. 2018. HindSight: Enhancing
Spatial Awareness by Sonifying Detected Objects in Real-Time 360-Degree Video.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173717

[47] Ionut-Cristian Severin and Dan-Marius Dobrea. 2020. Head Gesture Recogni-
tion based on 6DOF Inertial sensor using Artificial Neural Network. In 2020
International Symposium on Electronics and Telecommunications (ISETC). 1–4.
https://doi.org/10.1109/ISETC50328.2020.9301099

[48] Yeseul Son, Jiwoon Yeom, and Kwang-Soon Choi. 2019. Design of an IMU-
independent Posture Recognition Processing Unit for Head Mounted Devices.
In 2019 International Conference on Information and Communication Technology
Convergence (ICTC). 237–241. https://doi.org/10.1109/ICTC46691.2019.8939949

[49] Haska Steltenpohl and Anders Bouwer. 2013. Vibrobelt: Tactile Navigation Sup-
port for Cyclists. In Proceedings of the 2013 International Conference on Intelligent
User Interfaces (Santa Monica, California, USA) (IUI ’13). Association for Comput-
ing Machinery, New York, NY, USA, 417–426. https://doi.org/10.1145/2449396.
2449450

[50] Tamara von Sawitzky, Philipp Wintersberger, Andreas Löcken, Anna-Katharina
Frison, and Andreas Riener. 2020. Augmentation Concepts with HUDs for Cyclists
to Improve Road Safety in Shared Spaces. In Extended Abstracts of the 2020
CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–9.
https://doi.org/10.1145/3334480.3383022

[51] Wouter Walmink, Danielle Wilde, and Florian ’Floyd’ Mueller. 2014. Displaying
Heart Rate Data on a Bicycle Helmet to Support Social Exertion Experiences.
In Proceedings of the 8th International Conference on Tangible, Embedded and
Embodied Interaction (Munich, Germany) (TEI ’14). Association for Computing
Machinery, New York, NY, USA, 97–104. https://doi.org/10.1145/2540930.2540970

[52] Philipp Wintersberger, Andrii Matviienko, Andreas Schweidler, and Florian
Michahelles. 2022. Development and Evaluation of a Motion-Based VR Bicycle
Simulator. Proc. ACM Hum.-Comput. Interact. 6, MHCI, Article 210 (sep 2022),
19 pages. https://doi.org/10.1145/3546745

[53] K.I. Wong, Yi-Chung Chen, Tzu-Chang Lee, and Sheng-Min Wang. 2019. Head
Motion Recognition Using a Smart Helmet for Motorcycle Riders. In 2019
International Conference on Machine Learning and Cybernetics (ICMLC). 1–7.
https://doi.org/10.1109/ICMLC48188.2019.8949319

[54] Chen Yunfang, Zhou Yitian, Zhang Wei, and Liu Ping. 2018. Survey of Hu-
man Posture Recognition Based on Wearable Device. In 2018 IEEE Interna-
tional Conference on Electronics and Communication Engineering (ICECE). 8–12.
https://doi.org/10.1109/ICECOME.2018.8644964

https://doi.org/10.1145/3491101.3519831
https://doi.org/10.1145/3491102.3517560
https://doi.org/10.1145/3491102.3501959
https://doi.org/10.1145/1460412.1460444
https://doi.org/10.3929/ethz-b-000290955
https://doi.org/10.1145/2371574.2371631
https://doi.org/10.1016/j.mejo.2018.01.014
https://doi.org/10.1145/1753326.1753598
https://doi.org/10.1109/WCCCT49810.2020.9170009
https://doi.org/10.3390/su11216089
https://doi.org/10.1109/SAS.2016.7479886
https://doi.org/10.1109/SMC53654.2022.9945155
https://doi.org/10.1145/3173574.3173717
https://doi.org/10.1109/ISETC50328.2020.9301099
https://doi.org/10.1109/ICTC46691.2019.8939949
https://doi.org/10.1145/2449396.2449450
https://doi.org/10.1145/2449396.2449450
https://doi.org/10.1145/3334480.3383022
https://doi.org/10.1145/2540930.2540970
https://doi.org/10.1145/3546745
https://doi.org/10.1109/ICMLC48188.2019.8949319
https://doi.org/10.1109/ICECOME.2018.8644964

	Abstract
	1 Introduction
	2 Related work
	2.1 Quantifying Cyclists' Behavior
	2.2 Activity Recognition via Head Movements
	2.3 Evaluating Cyclists' Behavior

	3 Study 1: Cycling in Virtual Reality
	3.1 Participants and Study Design
	3.2 Apparatus
	3.3 Measurements
	3.4 Procedure
	3.5 Data analysis
	3.6 Quantitative results
	3.7 Qualitative results
	3.8 Discussion

	4 Approach for measuring head rotations using iPhone and AirPods
	5 Study 2: Cycling Outdoors
	5.1 Participants and Study Design
	5.2 Apparatus
	5.3 Measurements
	5.4 Procedure
	5.5 Data analysis
	5.6 Quantitative results
	5.7 Qualitative results

	6 Discussion and Future Work
	6.1 Perceived Safety and Head Movements
	6.2 Quantifying head movements
	6.3 Virtual Reality vs. Outdoors

	7 Limitations
	8 Conclusion
	Acknowledgments
	References

